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Abstract

The development of an Ordinary Differential Equation (ODE) solver test library
presents several challenges, as there is no accepted technique to verify the correctness of
the solution obtained by a particular solver. A comparison of results obtained by
different algorithms is also difficult due to the differences in the reporting intervals. In
this paper we show that solving an ODE with both stiff and non-stiff algorithms can
provide a validation to the correctness of the solution. The results obtained by different
algorithms can be compared based on initial, minimal, maximal and final values of the
differential variables. Cubic spline interpolation can be used to compare integrated
values at equal intervals. In the example presented, the need and the potential benefits of
an ODE test library are demonstrated. It is shown that even a widely used and well
tested algorithm may yield incorrect or even absurd results under certain circumstances.
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1. Introduction

Steady state and dynamic simulations of chemical processes typically require numerical
solutions of large systems of nonlinear algebraic equations (NLE), ordinary differential
equations (ODE), and systems of differential-algebraic equations (DAE). It is often
assumed by the user that the numerical solver will find the correct solution for a
particular problem, or it will issue warning messages if there are uncertainties regarding
the accuracy and/or correctness of the solution. Unfortunately, the solution provided by
the numerical solver cannot always be trusted (e.g. Shacham, et al., 1995). The user of
software packages also needs some reference concerning the error tolerance and the
integration algorithm that should be used for a particular problem as inappropriate
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values may cause exorbitantly long integration times in case of too tight tolerances, or
incorrect or even absurd results in case of loose tolerances.

Confidence in the software’s capability to correctly solve most problems can be gained
by evaluation with a large set of test problems containing examples that are known to be
difficult to solve. A set of test problems can also serve as reference for the software
users to help with selection of the error tolerances and an appropriate integration
algorithm. We have previously developed a web-based library for testing performance
of NLE solvers (Shacham et al., 2002). This library has already proven its value as it is
being used for rigorous evaluation of new algorithms for solving NLEs (see, for
example, Lucia and Feng, 2003 and Bellavia et al., 2004).

In this paper we propose a technique for comparison of results obtained by different
ODE solvers and a method for validation of these results. Necessary information is
described for each library problem that is essential for comprehensive testing of the
algorithms.

A practical example is used to demonstrate the benefits of the proposed techniques and
the ODE library. The Polymath' and MATLAB? software packages were used to carry
out the calculations reported in this paper.

2. The Information Included in the Library

The library contains information related to the problem definition and the solution
trajectory of the variables that are defined by a differential equation. The model
equations of the problem are stored in the same form as the input for a numerical solver
(Polymath), in order to prevent introduction of typographical and other errors.

The correctness of the problem solution is verified by at least one non-stiff (such as the
4™ order Runge-Kutta algorithm with error estimation and step size control) and one
stiff algorithm. If the difference between the two solutions does not exceed 1% at any
point, the solution is considered as correct. This solution verification is employed as the
probability that the two algorithms will yield the same erroneous solution is very small
because the algorithms are based on different principles. The initial, maximal, minimal
and final values of the variables are compared first. Additional comparison is done
using the variable values at equal intervals. Since the intervals at which the variable
values are reported by the solution algorithms can be very different, the cubic spline
interpolation is used to calculate the values at equal intervals. The tabular presentation
of those values is included in the library as "residual plots" that display the difference
between the variable values that were calculated using the two algorithms.

The number of function evaluations required to reach the solution using the different
algorithms is also included so that the users can compare the efficiency of the various
methods. The dependent variables are plotted as a function of the independent variables
using all the integration step values of the Runge-Kutta algorithm. Stiff algorithms can
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use fewer steps to yield correct results at a particular point, but these may not follow
correctly the curvature of the function (as was demonstrated by Shacham et al. 1995).

3. Multi-component, Semi-Batch Steam Distillation — an Example

This example is based on the work of Prenosil (1976). A simplified model and its
solution are also presented by Ingham et al (1994). The process involves steam
distillation of an n-octane and n-decane mixture. The organic phase is initially loaded
into the still and is heated by a continuous feed of steam. The complete Polymath
equation input and the MATLAB programs for the solution of this problem are
presented in Appendix A°.

There are two separate periods in the operation of the still. The first is the heating period
where the sum of the vapour mole fractions of the three compounds (n-octane, n-decane
and water) is less than one. In this period the indicator boil = 0. When the difference
between the sum of the vapour mole fractions and 1 (unity) becomes less than 0.0001,
the indicator boil gets a value greater than one. The differential equations included in
the model are the mass balances on liquid z-octane, n-decane and water in the still and
the equation that represents the change of the temperature in the still. The change of
temperature in the still is represented by two different equations. For the heating period
the energy balance equation is used for this purpose, while for the distillation period the
temperature is changed in order to follow the bubble point curve using the controlled
integration technique of Shacham et al.(1996). For this particular case the controlled

3
integration technique can be described as follows. Lete =1- 'Zl y; » where y; is the
l:

mole fraction of component i in the vapour phase. The controlled integration is initiated

when ¢ approaches zero (& < 10_5 ). In order to prevent increase of the absolute value
of ¢ the temperature in the still is adjusted in a controlled manner, dT/dt =K.¢,

where K. is the controller proportional gain.

The change of the mass of the water in the still is also represented by two equations. For
the heating period it is assumed that the steam is completely condensed, thus the rate of
change of the water mass is equal to the steam feed flow rate. For the distillation period,
the rate of water evaporation is subtracted from the steam flow rate. Definition and
description of the various variables and equations included in this problem are provided
in Appendix A.

There are two potential causes for difficulties in the numerical solution of this problem.
The first is the transition point from the heating period to the distillation period where
two of the model equations are changed. Here the algorithm for adjustment of the
integration step, which monitors the local truncation error, must reduce the step-size to a
very small value to compensate for the non-smoothness of the functions. After passing
this point, the step size must be increased to its normal value. Simple step-size
adjustment algorithms (e.g. halving the step size when the error exceeds the desired
tolerance) may require hundreds of function evaluations to pass the transition point. The
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other difficulty is related to the value of K., the proportional gain in the controlled
integration scheme. Larger K., enables obtaining more precise temperature values

(smaller |8| ), but makes the equation more stiff, thus forcing smaller step sizes.

This system of equations was solved using Polymath and MATLAB, with several
different integration algorithms. The results obtained were very close in all cases except
one case. Therefore, only the MATLAB solutions will be discussed in what follows.

In the MATLAB solution, the integration was carried out from # = 0 min up to # = 30
min, using K. =10000. The integration algorithms that were used are ode45, odel5s and
ode23s. The ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-
Prince pair (Dormand and Prince, 1980). The odel5s is a variable order solver based on
the numerical differentiation formulas (NDFs). Optionally, it uses the backward
differentiation formulas (BDFs), also known as Gear's method (Shampine and Reichelt
,1997). The ode23s is based on a modified Rosenbrock formula of order 2. Because it is
a one-step solver, it may be more efficient than odel5s at crude tolerances. It can solve
several types of stiff problems for which odel5s is not effective (Shampine and Reichelt
,1997).

Table 2. Partial results, using the ode45 and ode23s routines, for the
steam distillation example.

Value Initial Minimal Maximal Final
Variable ode45  ode23s ode45  ode23s ode45 ode23s
T 25 25 25 9536 9534 95.36 95.34
Mx; 10.991 0.389 0.389 10991 10.991 0.389 0.389
Mx, 4.169 2.18 2.18 4.169  4.169 2.18 2.18
My 0 0 0 25.203  25.204 25.203 25.204

Partial results for the steam distillation problem are shown in Table 2. The initial,
minimal, maximal and final values for the temperature, the mass of n-octane, n-decane
and water in the still are shown. The differences between the results obtained by the two
techniques are less than 0.5%; therefore, the solutions are essentially the same. To
investigate the efficiency of the various methods, integration statistics can be examined.
For the ode45 technique, some 3790 integration steps were required, while for ode23s
only 144 steps were required. Thus for this problem, the efficiency of the stiff technique
is higher by more than an order of magnitude.

Plots of the temperature in the still, and the masses of n-octane, n-decane and water are
shown in Figures land 2 respectively. During the heating period, the temperature
changes linearly with time. When boiling starts there is a sharp reduction in the slope
and the line becomes more curved. The mass of liquid in the still increases
continuously. However, the slope is reduced when boiling starts and there the plot
becomes more curved toward the end of the distillation. This is associated with a
decrease of the mass of n-octane and of n-decane, with the more volatile (n-octane)
being depleted much faster. The n-octane’s concentration in the liquid becomes lower
than that of #-decane after 19 minutes.

Further validation of these results can be achieved by plotting the differences between
the values of the various variables obtained by the ode45 and the ode23s algorithms at



equal time intervals. Cubic spline extrapolations are used to generate the variable values
at equal time intervals of one minute in this case. A plot of the temperature differences
obtained by the two integration techniques vs. the temperature obtained by the ode45
method is shown in Figure 3. While above 90 °C (near boiling temperature) the
differences become somewhat larger, they do not exceed 0.1% at any point. This
reconfirms that the two solutions are practically identical.
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Figure 1.Mass of n-octane (Mx1), n-decane (Mx2) and water (MW)(a) and
temperature (b) in the distillation still
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Figure 3. Difference between solutions obtained by ode45 and ode23s
algorithms for the temperature in the still

The proposed testing of various algorithms is further demonstrated by solving the same
problem using the odel5s routine. The results summarized in Table 3 clearly indicate



that this algorithm yields an incorrect solution. The comparison in Table 3 indicates that
most values obtained by odel5s are very similar to those obtained by ode45, except that
the minimal temperature and water mass values are both negative. While the inability of
the odel5s routine to solve correctly the problem requires further investigation, this
example demonstrates very clearly the need to use a test problem library with
appropriate test procedures in order to detect such failures.

Table 3. Partial results, using the ode45 and odel5s routines, for the
steam distillation example

Value Initial Minimal Maximal Final
Variable ode45 odelSs ode45  odelSs ode45  odelSs
T 25 25 -84.95 95.36 96.72 95.36 96.72
Mx, 10.991 0.389  9.15e-5 10.991 10.991 0.389  9.15e-5
Mx, 4.169 2.18  0.4265 4.169  4.169 2.18  0.4265
My 0 0 -8.6885 25.203 7.187 25.203 5.52

4. Conclusions

Testing of algorithms for the solution of ODE problems can be achieved by

e  Validating the correct solution of ODE problems using both stiff and non-stiff
algorithms

e Reporting initial, minimal, maximal and final values for the differential
variables

e Plotting the difference between the values obtained at equal intervals by
different techniques

e Plotting the dependent variable values versus the independent variable

The particular example in this paper demonstrates the need for an ODE solver test

library, as even a widely accepted and well-tested algorithm is shown to yield incorrect

or even absurd results under certain conditions. Work is in progress for developing such

a library based on the evaluation principles described in this paper.
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