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Abstract 

The introduction of mathematical software packages as effective and efficient means for 

engineering problem solving allows the retirement of many calculational methods and 

the application of efficient computer-based techniques that are enabled by effective 

software. This paper discusses the following issues: analytical versus numerical solution 

techniques, graphical versus numerical solution techniques, teaching numerical methods 

and programming, validation and comparison of regression models, and determination 

of the number of significant digits in the reported results of numerical solutions. 
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1. Introduction 

In recent years, traditional problem solving techniques (e.g., analytical, graphical, short-

cut, trial and error methods and computer language programming) have been largely 

replaced by the use of mathematical software packages, such as MAPLE, Mathcad, 

MATLAB, Mathematica and POLYMATH. The general use of software packages 

enables easier, more rapid and more accurate problem solutions. However, this change 

has also required shifting the emphasis in the presentation of certain subject areas of 

chemical engineering due to the new capabilities in problem solving. Thus, some of the 

traditional problem solving techniques have been de-emphasized (they are "Out") and 

some new techniques are becoming very important (they are "In").  

 The usefulness of a particular method in engineering practice is not the sole 

consideration in deciding whether it should be included in the syllabus of a chemical 

engineering course. Some of the traditional methods may still have considerable 

pedagogical value as a simple and easy-to-understand introduction of the subject matter, 

and this should precede the application of rigorous mathematical modeling. Often 

graphical methods enable visualization of the solution process for better understanding.  

 In this paper several examples are presented which demonstrate some of the 

considerations that should be used for deciding whether a particular method can still be 

considered as “In”, or should be “Out”. 

2.  Example 1 – Replacing the Analytical Solution by a Numerical Solution 

Fogler (1986, 1999) provides several examples where analytical solutions that were 

outlined in the earlier editions of his textbook "Elements of Chemical Reaction 

Engineering" have been replaced by numerical solutions. The "Hydrodealkylation of 

Mesitylene" problem (pp. 471-478 in Fogler (1986) and pp. 304-307 in Fogler (1999)) 
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will be used for demonstrating the conditions where numerical solution is preferable to 

analytical solution. 

 In this example, the catalytic gas-phase production of m-xylene (X) by 

hydrodealkylation (with hydrogen, H) of mesitylene (M) in gas phase is considered: 

 

 

 

The m-xylene can also undergo hydrodealkylation to form less valuable toluene (T): 

 

 

 

 The objective is to design a packed-bed reactor in which the production of the 

m-xylene is maximal, as m-xylene sells for a higher price than toluene. The 

mathematical model of the problem includes three simultaneous nonlinear ordinary 

differential equations (ODEs): 

 

 (1) 

 

 

 (2) 

 

where F is the volumetric flow rate, V is the reactor volume, r1 and r2 are the reaction 

rates of H, C is the concentration, and k1 and k2 are reaction rates constants. The ODE 

system of Equation (1) is nonlinear, and Fogler (1986) suggested defining conversion 

variables and combining equations in order to obtain one nonlinear ODE that can be 

solved analytically. The conversion variables were defined as: 

 

 

 

 

Substituting the new variables into the ODE system (1) and additional manipulation of 

the equations results in the following equation which provides the relationship between 

XA1 and XA2: 

 

                                                                                       (3) 

 

 

where θM is the initial mesitylene/hydrogen ratio. Equation (3) can be brought into the 

form of Bernoulli's differential equation, which can be solved using an integrating 

factor. Substituting the initial conditions into the solution yields: 
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 (4) 

 

 

This equation gives the moles of toluene formed per mole of hydrogen fed (XA2) as 

function of moles of mesitylene consumed per more of hydrogen fed (XA1). Extensive 

manipulation of the equations (which requires approximately four pages in Fogler's 

1986 book) is necessary in order to express the flow rates of the various products as 

function the reactor volume and to find the optimal volume at which the production of 

m-xylene is maximal. 

 In the subsequent editions of the Fogler book (Fogler (1999), for example), the 

analytical solution is replaced by numerical solution by the POLYMATH software 

package (POLYMATH is a product of Polymath Software http://www.polymath-

software.com). The POLYMATH model (which is essentially the same as shown in p. 

307 of Fogler 1999, except that comments have been added) is shown in Table 1.  The 

POLYMATH model (including the "comments" which start with the # sign) provides 

complete documentation of the differential and algebraic equations, the values of the 

constants, and the initial and final conditions. Note that the differential equations of 

Eq.1 have been rewritten in Table 1 in terms of concentrations and residence time (τ = 

V/v0). 

 The solution of the model of Table 1 yields the flow rate profiles of the various 

compounds shown in Figure 1. Observe that there is a clear maximum in the m-xylene 

flow rate in the vicinity of V = 95 ft
3
. Examining the numerical results obtained by 

POLYMATH (not shown) reveals that at the optimum τ = 0.197 h; V = 94 ft
3
; CX = 

0.005067 lb-mol/ft
3
 and FX = 2.412 lb-mol/h. The uncertainty in the optimal value of τ is 

less than 2% (0.003 h). Thus, there is no justification to use more sophisticated software 

to identify the optimum with higher precision.   

 This example provides the key points which make the numerical solution 

preferred to the analytical solution: 

1. The solution is expected to be located within a well defined range of the independent 

variable(s), thus the fact that the numerical solution is valid only in a limited region 

is not a restriction this case. 

2. The problem is used in a textbook of "reaction engineering" where the main 

objective is to teach the students the modeling and critical analysis of the results 

aspects, rather than the technical details of the solution. 

3. The analytical solution cannot be generalized, thus it is valid only for the particular 

form of the stoichiometric equations and rate expressions of the example. Any 

change in the model equations may require a completely different approach to an 

analytical solution (if still feasible). 

The analytical solution technique is useful if the range in which the solution sought is 

not strictly bounded (when investigating asymptotic behavior, for example). 

3. Example 2 – Graphical Solution Techniques – What is “Out” and What 
is Still “In” 

Very few graphical solution techniques are currently used in chemical engineering 

practice, as most graphical methods require solving a simplified version of the problem 

(example - using a pseudo binary mixture instead of a multi component mixture in 

( )[ ]

12

/

1121
2

/1

)/1(/ 12

kk

XXkk
X

kk

MAMAM
A

−

−−−
=

θθθ



What is "In" and what is "Out" in Engineering Problem Solving  5 

multistage separation calculations). Moreover, they are much more time consuming and 

less accurate than the numerical solution techniques.  

 However for current educational use, the graphical solution technique can be 

“simulated” on the computer, thus eliminating the disadvantages of time requirement 

and inaccuracy. Do such simulations justify retaining the graphical method for 

educational purposes? This question will be investigated in connection with the 

McCabe-Thiele and Ponchon-Savarit methods for multistage separation calculations. 

There have been several attempts incorporating Excel spreadsheets or other software 

packages to simulate graphical techniques. For example, Joo and Choudhary (2006) 

have developed dedicated MATLAB programs for this purpose. 

 The educational value of the graphical techniques can be appreciated by a 

review of the steps involved in the preparation of rigorous mathematical models for 

distillation columns. These models involve the MESH equations (mol balance, 

equilibrium, summation, and enthalpy balance for each individual equilibrium tray) as 

stated and summarized by Seader and Henley (1998). Correlations expressing the 

temperature (and possibly pressure and composition) dependence of the vapor liquid 

equilibrium ratios must be provided.  Additionally, the molar enthalpies of the 

individual components have to be added along with mixing rules in order to provide the 

molar enthalpies of the various liquid and vapor streams.  The equations representing 

the individual trays, the condenser and the reboiler have to be combined together to 

represent the complete distillation column. For a student who is being acquainted for the 

first time with the operation of a distillation column, the complexity of the model may 

actually conceal the basic principles of the operation and the most important aspects 

associated with the design of a distillation column.     

 However, the simplified McCabe-Thiele method can provide an excellent 

introduction to important concepts and terms, such as the equilibrium curve, stripping-

section and rectifying section operating lines, feed condition and feed-stage location, 

minimum and total reflux, etc. Consequently, on pedagogical grounds, there is a full 

justification to keep this method in the syllabus of “Separation Process” courses. Seader 

and Henley (1999) reach the same conclusion by noting “the graphical construction of 

the McCabe-Thiele method greatly facilitates the visualization of many important 

aspects of multistage distillation, and therefore, the effort required to learn the method is 

well justified.” 

 The Ponchon-Savarit method can be viewed as an extension of the McCabe-

Thiele method where the constant molar overflow assumption does not hold. Hence, 

there is a need to carry out energy balances to determine the vapor and liquid flow-rates. 

The benefits of teaching the Ponchon-Savarit method in addition to the McCabe-Thiele 

method are marginal. This realization caused, for example, Seader and Henley to 

remove the respective chapter (which was included in the 1981 edition) from the1998 

edition of their book. 

 Thus retention of graphical solution techniques (even with the necessary 

problem simplification and associated inaccuracies) has educational merit in cases 

wherever the simplified version of the problem and the solution method are important 

from the pedagogical point of view and the graphical presentation of the problem being 

solved enables better understanding. 

4. Additional Issues 

Parulekar (2006) provides several additional examples that can serve as basis for the 

discussion on what is "In" and what is "Out". Those examples will be briefly mentioned. 
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 Parulekar (2006) presents an illustration (used in a Reaction Engineering 

course) where multiple linear regression is used to find the parameters of a regression 

model, which represents the reaction rate as function of the partial pressures of two 

compounds. The author suggests solving this problem by setting up and solving the 

“normal equations” of the regression. This is a typical example to instructors' tendency 

to teach numerical methods (and possibly also computer programming) in courses 

where those methods are used only as tools for a problem solution. As essentially all the 

numerical techniques needed in undergraduate education are included in widely used 

software packages, numerical methods and programming should be taught in courses 

dedicated to those issues. Thus teaching numerical methods in the regular chemical 

engineering courses is "Out"; using software packages for problem solving is "In". 

 In the same example, the omission of the validation phase of the regression 

model is evident. Most current software packages provide straightforward options for 

regression and curve fitting of models to data. The emphasis should now be shifted to 

include methods for validation of the regression models using residual plots, confidence 

intervals, and degrees of freedom for the selection the most appropriate model amongst 

several possibilities. Thus regression of data without model validation is "Out"; the use 

of residual plots, confidence intervals, and degrees of freedom in analyzing regression 

models is "In". This issue is discussed in detail by Shacham et al. (1996). 

 Another illustration presented by Parulekar (2006) shows a great discrepancy 

between the number of reported digits in the input numerical data (two decimal digits) 

and the number of reported digits in the computational results (20 digits). This 

illustrates the important issue of the number of significant digits that should be reported 

in the results of numerical solutions. In this era of computer calculations, the number of 

digits reported by the programs can be very large, irrespective of their numerical or 

physical significances. However, the number of reported digits should be based on 

context (e.g., data precision) and error analysis. Thus, indiscriminant "copy and paste" 

of numbers from the results sheet into the report is "Out", while context and error 

analysis dependent determination of the number of significant digits is "In". While this 

issue may seem obvious, the examle taken from a recent educational publication shows 

that it requires further elaboration (see, for example, Shacham et al., 2002). 

5. Conclusions 

Current mathematical software packages enable the retirement of some previous 

calculational methods and facilitate the retention of some graphical techniques for 

enhancing the visualization and understanding of complex processes. Judicious use of 

mathematical software packages can greatly improve the educational process as 

illustrated in this paper and thereby favorably impact industrial practice.  

In this paper the practical consideration of the most effective time allocation in a 

particular course was emphasized. However, there is a need to further investigate the 

pedagogical aspects of the points raised. 
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Table 1. Partial POLYMATH Model for the Hydrodealkylation of Mesitylene 

Line Statement, # Comment 

1 d(CH) / d(tau) = r1+r2 #Hydrogen concentration (lb-mol/ft^3) 

2 CH(0) = 0.021 

3 d(CM) / d(tau) = r1 #Mesitylene concentration (lb-mol/ft^3) 

4 CM(0) = 0.0105 

5 d(CX) / d(tau) = -r1+r2 #M-xylene concentration (lb-mol/ft^3) 

6 CX(0) = 0 

7 r1=-k1*CM*CH^0.5 #Reaction rate 1 (lb-mol/ft^3/h) 

8 r2=-k2*CX*CH^0.5 #Reaction rate 2 (lb-mol/ft^3/h) 

9 k1=55.2 #Specific reaction rate 1 ((ft^3/lb-mol)^0.5/h) 

10 k2=30.2 #Specific reaction rate 2 ((ft^3/lb-mol)^0.5/h) 

11 v0=476 #Volumetric feed rate (ft^3/hr) 

12 Fx=CX*v0 # m-xylene outlet flow rate (mol/h) 

13 V=tau*v0 #Reactor volume (ft^3) 

14 tau(0) = 0 # Space time (hr) 

15 tau(f) = 0.5 
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Figure 1 Molar Flow Rate Profile in a PFR 


