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Session 12
INTRODUCTION
These solutions are for a set of numerical problems in chemical engineering developed for Session 12
at the ASEE Chemical Engineering Summer School held in Snowbird, Utah on August 13, 1997. The
problems in this set are intended to utilize the basic numerical methods in problems which are appro-
priate to a variety of chemical engineering subject areas.

The package used to solve each problem is the POLYMATH Numerical Computation Package
Version 4.0 which is widely used in Chemical Engineering. The complete set of problems solutions uti-
lizing the POLYMATH package is available from http://www.che.utexas/cache/.

The POLYMATH Numerical Computation Package has four companion programs.

- SIMULTANEOUS DIFFERENTIAL EQUATIONS
- SIMULTANEOUS ALGEBRAIC EQUATIONS
- SIMULTANEOUS LINEAR EQUATIONS
- CURVE FITTING AND REGRESSION

POLYMATH is a proven computational system which has been specifically created for educa-
tional use by M. Shacham and M. B. Cutlip. The various POLYMATH programs allow the user to
apply effective numerical analysis techniques during interactive problem solving on personal comput-
ers. Results are presented graphically for easy understanding and for incorporation into papers and
reports. Students with a need to solve numerical problems will appreciate the efficiency and speed of
problem solution.With POLYMATH, the user is able to focus complete attention to the problem rather
that spending valuable time in learning how to use or reuse the programs.

INEXPENSIVE SITE LICENSES AND SINGLE COPIES ARE AVAILABLE FROM:

CACHE CORPORATION**
P. O. Box 7939
AUSTIN, TX 78713-7939
Phone: (512)471-4933 Fax: (512)295-4498
E-mail: cache@uts.cc.utexas.edu
Internet: http://www.che.utexas/cache/

*The Ch. E. Summer School was sponsored by the Chemical Engineering Division of the American Society for Engineer-
ing Education. This material is copyrighted by the authors, and permission must be obtained for duplication unless for educa-
tional use within departments of chemical engineering.

**A non-profit educational corporation supported by most North American chemical engineering departments and many
chemical corporation. CACHE stands for computer aides for chemical engineering.
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Polymath Problem 1 Solution

Equation (1) can not be rearranged into a form where V can be explicitly expressed as a function of T
and P. However, it can easily be solved numerically using techniques for nonlinear equations. In order
to solve Equation (1) using the POLYMATH Simultaneous Algebraic Equation Solver, it must be
rewritten in the form

PM-(1)

where the solution is obtained when the function is close to zero, . Additional explicit equa-
tions and data can be entered into the POLYMATH program in direct algebraic form. The POLY-
MATH program will reorder these equations as necessary in order to allow sequential calculation.

The POLYMATH equation set for this problem are given by

Equations:
f(V)=(P+a/(V^2))*(V-b)-R*T
P=56
R=0.08206
T=450
Tc=405.5
Pc=111.3
Pr=P/Pc
a=27*(R^2*Tc^2/Pc)/64
b=R*Tc/(8*Pc)
Z=P*V/(R*T)
Search Range: 
V(min)=0.4, V(max)=1

In order to solve a single nonlinear equation with POLYMATH, an interval for the expected solu-
tion variable,V in this case, must be entered into the program. This interval can usually be found by
consideration of the physical nature of the problem. 

(a) For part (a) of this problem, the volume calculated from the ideal gas law as V = 0.66 liter/g-
mol can be a basis for specifying the required solution interval. An interval for the expected solution
for V can be entered as between 0.4 as the lower limit and 1.0 as the higher limit. The POLYMATH
solution, which is given in Figure PM-(1) for T = 450 K and P = 56 atm, yields V = 0.5749 liter/gmol
where the compressibility factor is Z = 0.8718. 

(b) Solution for the additional pressure values can be accomplished by changing the equations
in the POLYMATH program for P and Pr to

Pr=1
P=Pr*Pc

Additionally, the bounds on the molar volume V may need to be altered to obtain an interval where
there is a solution. Subsequent program execution for the various Pr’s is required.

(c) The calculated molar volumes and compressibility factors are summarized in Table (1).
These calculated results indicate that there is a minimum in the compressibility factor Z at approxi-
mately Pr = 2. The compressibility factor then starts to increase and reaches Z = 2.783 for Pr = 20 .

f V( ) P a

V2
-------+ 

  V b–( ) RT–=

f V( ) 0≈
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Table PM-1  Compressibility Factor for Gaseous Ammonia at 450 K

P(atm) Pr V Z

56 0.503 .574892 0.871827

111.3 1.0 .233509 0.703808

222.6 2.0 .0772676 0.465777

445.2 4.0 .0606543 0.731261

1113.0 10.0 .0508753 1.53341

2226.0 20.0 .046175 2.78348

Figure PM-1 Plot of f(V) versus V for van der Waals Equation

Variable Value f(  )

V 0.574892 0

P 56

R 0.08206

T 450

Tc 405.5

Pc 111.3

Pr 0.503145

a 4.19695

b 0.03737712

Z 0.871827

f(V)
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Polymath Problem 2 Solution

(a) The coefficients and the constants in the Equation Set Equation (6) can be directly introduced
into the POLYMATH Linear Equation Solver in matrix form as shown 

The solution is

which corresponds to the unknown flow rates of D1 = 26.25 mol/min, B1 = 17.5 mol/min, D2 = 8.75 mol/
min, and B2 = 17.5 mol/min.

(b) The overall balances and individual component balances on column #2 given in Equation Set
(7) can be solved algebraically to give XDx = 0.114, XDs = 0.120, XDt = 0.492 and XDb = 0.274. Similarly,
overall balance and individual component balances on column #3 presented as Equation Set (8) yield
XBx = 0.210, XBs = 0.4667, XBt = 0.2467 and XBb = 0.0767.

Name x1 x2 x3 x4 b

1 0.07 0.18 0.15 0.24 10.5

2 0.04 0.24 0.1 0.65 17.5

3 0.54 0.42 0.54 0.1 28

4 0.35 0.16 0.21 0.01 14

Variable Value

x1 26.25

x2 17.5

x3 8.75

x4 17.5
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Polymath Problem 3 Solution

(a) Data Regression with a Polynomial The POLYMATH Polynomial, Multiple Linear and
Nonlinear Regression Program can be used to solve this problem by first entering the data in a similar
manner to using a spreadsheet. Let us denote the column of temperature data in °C as TC and the col-
umn of pressure data as P. This POLYMATH worksheet is reproduced in Figure PM-(2) where the
first two columns are used in the polynomial regressions. 

A polynomial regression option within POLYMATH when the dependent variable column titled
P is regressed with the independent variable TC corresponds directly to Equation (9). The results are
summarized in Figure PM-(3) which also presents the value of the variance (var,) for each polynomial.
The variance indicates that the polynomial which best represents the data in this case is the 4th
degree.

(b) Regression with Clausius-Clapeyron Equation Data regression with the Clausius-Clapey-
ron expression, Equation (10), can be accomplished by three additional transformed variables (col-
umns) in the POLYMATH program used for part (a). Columns can be defined by the relationships:
logP = log(P), TK= T + 273.15, and neginvTK = -1/TK as indicated in Figure PM-(2). A request for lin-
ear regression when the first (and only) independent variable column is neginvTK and the dependent
variable column is logP yields the following plot and numerical results from POLYMATH as shown in
Figure PM-(4).

(c) Regression with the Antoine Equation This expression, Equation (11), cannot be linearized
and so it must be regressed with nonlinear regression option of the POLYMATH Polynomial, Multiple
Linear and Nonlinear Regression Program. With this option, the user must supply initial estimates.
In this case, it is helpful to use the initial estimates for A and B which were determined in part (b)
and use the estimate for C as 273.15. Direct entry of Equation (11) with the initial estimates gives the
converged results shown in Figure PM-(5). 

Figure PM-2 POLYMATH Entry for Regressions
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Figure PM-3 POLYMATH Results for Fitting Polynomials to Vapor Pressure Data

Parameter Value
0.95 Conf

Interval

 A 8.75201 0.542335

B 2035.33 153.628

                    Var 0.00759156

Figure PM-4 POLYMATH Results for Regression of Clausius-Clapeyron Equation
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Figure PM-5 POLYMATH Results for Nonlinear Regression of Antoine Equation
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Polymath Problem 4 Solution

The Equation Set (13) can be entered into the POLYMATH Simultaneous Algebraic Equation Solver,
but the nonlinear equilibrium expressions must be written as functions which are equal to zero at the
solution. A simple transformation of the equilibrium expressions of Equation Set Equation (12) to the
required functional form yields

PM-(2)

The above equation set may be difficult to solve because the division by unknowns may make most
solution algorithms diverge.

Expediting the Solution of Nonlinear Equations
An additional simple transformation of the nonlinear function can make many functions much less
nonlinear and easier to solve by simply eliminating division by the unknowns. In this case, the Equa-
tion Set PM-(2) can be modified to

PM-(3)

The POLYMATH equation set utilizing Equation Set PM-(3) with the initial conditions for part
(a) is given below.

Equations:
f(CD)=CC*CD-KC1*CA*CB
f(CX)=CX*CY-KC2*CB*CC
f(CZ)=CZ-KC3*CA*CX
KC1=1.06
CY=CX+CZ
KC2=2.63
KC3=5
CA0=1.5
CB0=1.5
CC=CD-CY
CA=CA0-CD-CZ
CB=CB0-CD-CY
Initial Estimates:
CD(0)=0
CX(0)=0
CZ(0)=0

(a), (b) and (c) The POLYMATH solutions are summarized in Table PM-(2) for the three sets of
initial conditions. Note that the initial conditions for problem part (a) converged to all positive concen-
trations. However the initial conditions for parts (b) and (c) converged to some negative values for
some of the concentrations. Thus a “reality check” on Table PM-(2) for physical feasibility reveals that

f CD( )
CCCD
CACB
---------------- KC1–=

f CX( )
CXCY
CBCC
----------------- KC2–=

f CZ( )
CZ

CACX
----------------- KC3–=

f CD( ) CCCD KC1CACB–=

f CX( ) CXCY KC2CBCC–=

f CZ( ) CZ KC3CACX–=
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the negative concentrations in parts (b) and (c) are the basis for rejecting these solutions as not repre-
senting a physically valid situation.

Table PM-2  POLYMATH Solutions of the Chemical Equilibrium Problem

Variable Part (a) Part (b) Part (c)

CD 0.7053 0.05556 1.070

CX 0.1778 0.5972 -0.3227

CZ 0.3740 1.082 1.131

CA 0.4207 0.3624 -0.7006

CB 0.2429 -0.2348 -0.3779

CC 0.1536 -1.624 0.2623

CY 0.5518 1.679 0.8078
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Polymath Problem 5 Solution

(a) For conditions similar to those of this problem, the Reynolds number will not exceed 1000 so
that only Equations (16) and (17) need to be applied. The logic which selects the proper equation
based on the value of Re can be employed using the “if... then... else...” statement within the POLY-
MATH Simultaneous Algebraic Equation Solver.

PM-(4)

Equation (13) should be rearranged in order to avoid possible division by zero and negative
square roots as it is entered into the form of a nonlinear equation for POLYMATH.

PM-(5)

The following equation set can be solved by POLYMATH.

Equations:
f(vt)=vt^2*(3*CD*rho)-4*g*(rhop-rho)*Dp
g=9.80665
rhop=1800
rho=994.6
Dp=0.208e-3
vis=8.931e-4
Re=Dp*vt*rho/vis
CD=if (Re<0.1) then (24/Re) else (24*(1+0.14*Re^0.7)/Re)
vt(min)=0.0001, vt(max)=0.05

Specifying  and  leads to the results summarized in Table PM-(3).

 (b) The terminal velocity in the centrifugal separator can be calculated by replacing the g in
Equation PM-(5) by 30g. Introduction of this change to the equation set gives the following results:

Table PM-3  Terminal Velocity Solution

Variable Value f( )

vt 0.0157816 -8.882e-16

rho 994.6

g 9.80665

rhop 1800

Dp 0.000208

vis 0.0008931

Re 3.65564

CD 8.84266

CD if    Re 0.1<( )= then 24 Re⁄( ) else 24 1 0.14Re0.7
+( )×( )

f vt( ) vt
2

3CDρ( ) 4 g ρp ρ–( )Dp–=

vt min, 0.0001= vt max, 0.05=

vt 0.2060  m s⁄= Re 47.72= and CD 1.5566=
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Equations (20) to (22), together with the numerical data and initial values given in the problem
statement, can be entered into the POLYMATH Simultaneous Differential Equation Solver. The ini-
tial startup is from a temperature of 20°C in all three tanks, thus this is the appropriate initial condi-
tion for each tank temperature. The final value or steady state value can be determined by solving the
differential equations to steady state by giving a large time interval for the numerical solution. Alter-
nately one could set the time derivatives to zero, and solve the resulting algebraic equations. In this
case, it is easiest just to numerically solve the differential equations to large value of t where steady
state is achieved. The POLYMATH coding for this problem is shown below.

Equations:
d(T1)/d(t)=(W*Cp*(T0-T1)+UA*(Tsteam-T1))/(M*Cp)
d(T2)/d(t)=(W*Cp*(T1-T2)+UA*(Tsteam-T2))/(M*Cp)
d(T3)/d(t)=(W*Cp*(T2-T3)+UA*(Tsteam-T3))/(M*Cp)
W=100
Cp=2.0
T0=20
UA=10.
Tsteam=250
M=1000
Initial Conditions:
t(0)=0
T1(0)=20
T2(0)=20
T3(0)=20
Final Value:
t(f)=200

 The time to reach steady state is usually considered to be the time to reach 99% of the final
steady state value for the variable which is increasing and responds the most slowly. For this problem,
T3 increases the most slowly, and the steady state value is found to be 51.317°C. In POLYMATH, this
can be easily done by displaying the output in tabular form for T1, T2, and T3 so that the approach to
steady state can accurately be observed. Thus the time must be determined when T3 reaches
0.99(51.317) or 50.804 °C. Again the tabular form of the output is useful in determining this time as
illustrated in Table 4 yielding the time to steady state as approximately 63.0 min. A plot of the three
tank temperatures from POLYMATH is given in Figure PM-(6). 

Table PM-4  Tabular Output Option from POLYMATH

t T3

60 50.662233

60.5  50.688128

61 50.713042

61.5 50.737011

62 50.760068

62.5 50.782246

63 50.803577

63.5 50.82409
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64 50.843817

64.5 50.862784

65 50.88102

Table PM-4  Tabular Output Option from POLYMATH

t T3

Figure PM-6 Dynamic Temperature Response in the Three 
Tanks
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Polymath Problem 7 Solution

Solving Higher Order Ordinary Differential Equations
Most mathematical software packages can solve only systems of first order ordinary differential equa-
tions (ODE’s). Fortunately, the solution of an n-th order ODE can be accomplished by expressing the
equation by a series of simultaneous first order differential equations each with a boundary condition.
This is the approach that is typically used for the integration of higher order ODE’s.

(a) Equation (23) is a second order ODE, but it can be converted into a system of first order
equations by substituting new variables for the higher order derivatives. In this particular case, a
new variable y can be defined which represent the first derivation of CA with respect to z. Thus Equa-
tion (23) can be written as the equation set

PM-(6)

This set of first order ODE’s can be entered into the POLYMATH Simultaneous Differential
Equation Solver for solution, but initial conditions for both CA and y are needed.   Since the initial
condition of y is not known, an iterative method (also referred to as a shooting method) can be used to
find the correct initial value for y which will yield the boundary condition given by Equation (25).

Shooting Method-Trial and Error
The shooting method is used to achieve the solution of a boundary value problem to one of an iterative
solution of an initial value problem. Known initial values are utilized while unknown initial values
are optimized to achieve the corresponding boundary conditions. Either “trial and error” or variable
optimization techniques are used to achieve convergence on the boundary conditions.

For this problem, a first “trial and error” value for the initial condition of y, for example y0 = -150,
is used to carry out the integration and calculate the error for the boundary condition designated by ε.
Thus the difference between the calculated and desired final value of y at z = L is given by

PM-(7)

Note that for this example, yf ,desired = 0 and thus ε(y0) = yf,calc only because this desired boundary con-
dition is zero.

The equations as entered in the POLYMATH Simultaneous Differential Equation Solver for an
initial “trial and error” solution are

Equations:
d(CA)/d(z)=y
d(y)/d(z)=k*CA/DAB
k=0.001
DAB=1.2E-9
err=y
Initial Conditions:
z(0)=0
CA(0)=0.2
y(0)=-150
Final Value:
z(f)=0.001

The calculation of err in the POLYMATH equation set which corresponds to Equation PM-(7) is only

dCA
dz

------------ y=

dy
dz
------- k

DAB
------------CA=

ε y0( ) yf calc, yf desired,–=
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valid at the end of the ODE solution. Repeated reruns of this POLYMATH equation set with different
initial conditions for y can be used in a “trial and error” mode to converge upon the desired boundary
condition for y0 where ε(y0) or err ≅ 0. Some results are summarized in Table PM-(5) for various values

of y0. The desired initial value for y0 lies between -130 and -140. This “trial and error” approach can be
continued to obtain a more accurate value for y0, or an optimization technique can be applied.

Newton’s Method for Boundary Condition Convergence
A very useful method for optimizing the proper initial condition is to consider this determination

to be a problem in finding the zero of a function. In the notation of this problem, the variable to be
optimized is y0 and the objective function is ε(y0) which is defined by Equation PM-(7).

 Newton’s method, an effective method for optimizing a single variable, can be applied here to
minimize the above objective function. According to this method, an improved estimate for y0 can be
calculated using the equation

PM-(8)

where  is the derivative of  at . The derivative, , can be estimated using a finite
difference approximation

PM-(9)

where  is a small increment in the value of . It is very convenient that  can be calcu-
lated simultaneously with the numerical ODE solution for  thereby allowing calculation of 
from Equation PM-(9) and a new estimate for  from Equation PM-(8). 

Using δ = 0.0001 for this example, the POLYMATH equation set for carrying out the first step in
Newton’s method procedure is given by 

Equations:
d(CA)/d(z)=y
d(y)/d(z)=k*CA/DAB
d(CA1)/d(z)=y1
d(y1)/d(z)=k*CA1/DAB
k=0.001
DAB=1.2E-9
err=y-0
err1=y1-0
y0=-130
L=.001
delta=0.0001
CAanal=0.2*cosh(L*(k/DAB)^.5*(1-z/L))/(cosh(L*(k/DAB)^.5))
derr=(err1-err)/(.0001*y0)
ynew=y0-err/derr
Initial Conditions:
z(0)=0

Table PM-5  Trial Boundary Conditions for Equation Set (6) in Problem 7 Part (a)

y0 (z = 0) -120. -130. -140. -150.

yf,calc (z = L) 17.23 2.764 -11.70 -26.16

ε(y0) 17.23 2.764 -11.70 -26.16

y0 new, y0 ε y0( ) ε' y0( )⁄–=

ε' y0( ) ε y y0= ε' y0( )

ε' y0( )
ε y0 δy0+( ) ε y0( )–

δy0
-------------------------------------------------≅

δy0 y0 ε y0 δy0+( )
ε y0( ) ε' y0( )

y0
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CA(0)=0.2
y(0)=-130
CA1(0)=0.2
y1(0)=-130.013
Final Value:
z(f)=0.001

This set of equations yields the results summarized in Table 6 where the new estimate for y0 is
the final value of the POLYMATH variable ynew or -131.911. Another iteration of Newton’s method
can be obtained by starting with the new estimate and modifying the initial conditions for y and y1
and the value of y0 in the POLYMATH equation set. The second iteration indicates that the err is
approximately 3.e-4 and that ynew is unchanged indicating that convergence has been obtained. For
the value of y0 = -131.911, the numerical and analytical solutions are equal to at least six significant
digits. 

Table PM-6  Partial Results for Selected Variables during 1st Newton’s Method Iteration

Variable Initial Value
Maximum 

Value
Minimum 

Value Final Value

z 0 0.001 0 0.001

y -130 2.76438 -130 2.76438

CA 0.2 0.2 0.140428 0.140461

err -130 2.76438 -130 2.76438

y1 -130.013 2.74558 -130.013 2.74558

CA1 0.2 0.2 0.140446 -0.142229

err1 -130.013 2.74558 -130.013 2.74558

derr 1 1.44642 1 1.44642

ynew -5.22675e-11 -5.22675e-11 -131.911 -131.911
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Polymath Problem 8 Solution

This problem requires the simultaneous solution of Equation (27) while the temperature is calculated
from the bubble point considerations implicit in Equation (29). A system of equations comprising of
differential and implicit algebraic equations is called “differential algebraic” or a DAE system. There
are several numerical methods for solving DAE systems. Most problem solving software packages
including POLYMATH do not have the specific capability for DAE systems.

Approach 1 The first approach will be to use the controlled integration technique proposed by
Shacham, et al.4. Using this method, the nonlinear Equation (29) is rewritten with an error term
given by

PM-(10)

where the ε calculated from this equation provides the basis for keeping the temperature of the distil-
lation at the bubble point. This is accomplished by changing the temperature in proportion to the
error in an analogous manner to a proportion controller action. Thus this can be represented by
another differential equation

PM-(11)

where a proper choice of the proportionality constant Kc will keep the error below a desired error tol-
erance.

The calculation of Kc is a simple trial and error procedure for most problems. At the beginning Kc
is set to a small value (say Kc = 1), and the system is integrated. If ε is too large, then Kc must be
increased and the integration repeated. This trial and error procedure is continued until ε becomes
smaller than a desired error tolerance throughout the entire integration interval.

The temperature at the initial point is not specified in the problem, but it is necessary to start
the problem solution at the bubble point of the initial mixture. This separate calculation can be car-
ried out on Equation (29) for x1 = 0.6 and x2 = 0.4 and the Antoine equations using the POLYMATH
Simultaneous Algebraic Equation Solver. The solution equation set is given by 

Equations:
f(Tbp)=xA*PA+xB*PB-760*1.2
xA=0.6
PA=10^(6.90565-1211.033/(Tbp+220.79))
PB=10^(6.95464-1344.8/(219.482+Tbp))
xB=1-xA
yA=xA*PA/(760*1.2)
yB=xB*PB/(760*1.2)
Search Range:
Tbp(min)=60, Tbp(max)=120

The resulting initial temperature is found to be .
The system of equations for the batch distillation as they are introduced into the POLYMATH

Simultaneous Differential Equation Solver using  are

Equations:
d(L)/d(x2)=L/(k2*x2-x2)
d(T)/d(x2)=Kc*err
Kc=0.5e6

ε 1 k1x1– k2x2–=

dT
dx2
--------- Kcε=

T0 95.5851=

Kc 0.5
6×10=
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k2=10^(6.95464-1344.8/(T+219.482))/(760*1.2)
x1=1-x2
k1=10^(6.90565-1211.033/(T+220.79))/(760*1.2)
err=(1-k1*x1-k2*x2)
Initial Conditions:
x2(0)=0.4
L(0)=100
T(0)=95.5851
Final Value:
x2(f)=0.8

and the partial results from the solution are summarized in Table PM-(7)

The final values from the table indicate that 14.05 mol of liquid remain in the column when the
concentration of the toluene reaches 80%. During the distillation the temperature increases from

95.6  to 108.6 . The error calculated from Equation (10) increases from about  to

 during the numerical solution, but it is still small enough for the solution to be considered
as accurate.

Approach 2 A different approach for solving this problem can be used because Equation (29)
can be differentiated with respect to x2 to yield

PM-(12)

Thus Equation PM-(12) can provide the bubble point temperature during the simultaneous integra-
tion with Equation (27). The equation set to be used with the POLYMATH Simultaneous Differential
Equation Solver is given by

Equations:
d(L)/d(x2)=L/(k2*x2-x2)
d(T)/d(x2)=(k2-k1)/(ln(10)*(x1*k1*(-1211.033)/(220.79+T)^2+x2*k2*(-1344.8)/

(219.482+T)^2))

Table PM-7  Partial Results for DAE Binary Distillation Problem

Variable Initial Value Maximum Value Minimum Value Final Value

x2 0.4 0.8 0.4 0.8

L 100 100 14.0456 14.0456

T 95.5851 108.569 95.5851 108.569

k2 0.532535 0.785753 0.532535 0.785753

Kc 500000 500000 500000 500000

x1 0.6 0.6 0.2 0.2

k1 1.31164 1.8566 1.31164 1.8566

err -3.64587e-07 7.75023e-05 -3.64587e-07 7.75023e-05

°C °C 3.6
7–×10–

7.75
5–×10

dT
dx2
---------

k2 k1–( )

10( ) x1k1

B– 1

C1 T+( )2
------------------------- x2k2

B– 2

C2 T+( )2
-------------------------+ln

---------------------------------------------------------------------------------------------------------=
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k2=10^(6.95464-1344.8/(T+219.482))/(760*1.2)
k1=10^(6.90565-1211.033/(T+220.79))/(760*1.2)
x1=1-x2
Initial Conditions:
x2(0)=0.4
L(0)=100
T(0)=95.5851
Final Value:
x2(f)=0.8

The POLYMATH solution to this problem is essentially the same as that found in Approach 1.
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Polymath Problem 9 Solution

Introduction of the above equations including the numerical values of the parameter provided in the
problem statement into the POLYMATH program yields

Equations
d(x)/d(W)=-rA/FA0
d(T)/d(W)=(.8*(Ta-T)+rA*delH)/(CPA*FA0)
d(y)/d(W)=-0.015*(1-.5*x)*(T/450)/(2*y)
Ta=500
delH=-40000
CPA=40
FA0=5
k=.5*exp((41800/8.314)*(1/450-1/T))
CA=.271*(1-x)*(450/T)/(1-.5*x)*y
CC=.271*.5*x*(450/T)/(1-.5*x)*y
Kc=25000*exp(delH/8.314*(1/450-1/T))
rA=-k*(CA^2-CC/Kc)
Initial Conditions:
W(0)=0
x(0)=0
T(0)=450
y(0)=1
W(f)=20

(a) The requested plot for part (a) is shown in Figure PM-(7) where there is a rapid increase in
conversion and temperature within the reactor at approximately the midpoint of the catalyst bed. The
bed pressure drop is enhanced by the increased temperature and reduced pressure even though the
number of moles is decreasing.

(b) This rapid increase is due to the exothermic reaction rapidly accelerating due to the increas-
ing temperature even though the reactant concentration falling. Equilibrium is rapidly achieved after
this hot spot is achieved with the temperature and conversion only reducing slightly due to the exter-

×10-3

Figure PM-7 Conversion, Reduced Pressure, and Temperature Profiles in Catalytic Reactor
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nal heat transfer which tends to slightly cool the reactor as the reacting mixture continues toward the
reactor exit.

(c) The concentration profiles shown in Figure PM-(8) reflect the net effects of reaction rate and
changes in temperature and pressure within the reactor.

Figure PM-8 Concentration Profiles in Catalytic Reactor
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Polymath Problem 10 Solution

This problem requires the solution of Equations (40) and (42) through (47) which can be accomplished
with the POLYMATH Simultaneous Differential Equation Solver. The step change in the inlet tem-
perature can be introduced at t = 10 by using the POLYMATH “if... then... else...” statement to provide
the logic for a variable to change at a particular value of t. The generation of a step change at t = 10,
for example, is accomplished by the POLYMATH program statement

step=if (t<10) then (0) else (1)

(a) Open Loop Performance The step down of 20°C in the inlet temperature at t = 10 is imple-
mented below in the equation set for the case where Kc = 0 which gives the open loop response.

Equations:
d(T)/d(t)=(WC*(Ti-T)+q)/rhoVCp
d(T0)/d(t)=(T-T0-(taud/2)*dTdt)*2/taud
d(Tm)/d(t)=(T0-Tm)/taum
d(errsum)/d(t)=Tr-Tm
WC=500
rhoVCp=4000
taud=1
taum=5
Tr=80
Kc=0
tauI=2
step=if (t<10) then (0) else (1)
Ti=60+step*(-20)
q=10000+Kc*(Tr-Tm)+Kc/tauI*errsum
dTdt=(WC*(Ti-T)+q)/rhoVCp
Initial Conditions:
t(0)=0
T(0)=80
T0(0)=80
Tm(0)=80
errsum(0)=0
t(f)=60

A plot of the temperatures T, T0 and Tm as generated by POLYMATH is given in Figure PM-(9)
which also verifies the steady state operation for t < 10 min as there is no change in any of the temper-
ature values. Since it is difficult to determine that the Padé approximation for a short time delay is
working from a plot, the POLYMATH option to “output data to a file” has been used to prepare Table
PM-(8). This table indicates that there is good agreement between T (at any t) and T0 (one minute

Table PM-8  Dead Time Generation by Padé Approximation

Time t 
min

T
°C

T0
°C

Time t 
min

T
°C

T0
°C

9 80 80 15 75.352614 76.066236

10 80 80 16 74.723801 75.353633

11 78.824973 79.821167 17 74.168787 74.724624

12 77.788008 78.801988 18 73.678794 74.1693

13 76.873024 77.786106 19 73.246627 73.679511

14 76.065326 76.873588 20 72.865268 73.247303
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later) with more error at the initiation of the step change. This verifies that the Padé approximation
for dead time is providing the one minute time delay.

(b) Closed Loop Performance The closed loop performance of the PI controller requires the
change of Kc from zero in part (a) to the baseline proportional gain of 50. This simple change results in
the temperature transients shown in Figure PM-(10).

(c) Closed Loop Performance for Kc = 500 The increase of a factor of 10 in the proportional gain
from the baseline case gives the unstable result plotted in Figure PM-(11). This is clearly an undesir-
able result.

Figure PM-9 Open Loop Response to Step Down in Inlet Feed Temperature at t = 10 min
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Figure PM-10 Closed Loop Response to Step Down in Inlet Feed Temperature at t = 10 min.

Figure PM-11 Closed Loop Response to Step Down in Inlet Feed Temperature at t = 10 min for Kc = 500.
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(d) Closed Loop Performance for Only Proportional Control The removal of the integral control
action gives the stable result plotted in Figure PM-(12). Note that there is offset from the set point

when the system returns to steady state operation. This is always the case for only proportional con-
trol, and the use of integral control allows the offset to be eliminated.

Figure PM-12 Closed Loop Response for only Proportional Control.
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(e) Closed Loop Performance with Limits on q There are many times in control when limits
must be established. In this example, the limits on q can be achieved by a POLYMATH “if... then...
else...” statement which can be utilized as shown below

qlim=if(q<0)then(0)else(if(q>=2.6*10000)then(2.6*10000)else (q))

The complete POLYMATH equation set for part (e) of this problem is

Equations:
d(T)/d(t)=(WC*(Ti-T)+qlim)/rhoVCp
d(T0)/d(t)=(T-T0-(taud/2)*dTdt)*2/taud
d(Tm)/d(t)=(T0-Tm)/taum
d(errsum)/d(t)=Tr-Tm
WC=500
Ti=60
rhoVCp=4000
taud=1
taum=5
Kc=5000
tauI=2
step=if (t<10) then (0) else (1)
Tr=80+step*(10)
q=10000+Kc*(Tr-Tm)
qlim=if(q<0)then(0)else(if(q>=2.6*10000)then(2.6*10000)else (q))
dTdt=(WC*(Ti-T)+qlim)/rhoVCp
Initial Conditions:
t(0)=0
T(0)=80
T0(0)=80
Tm(0)=80
errsum(0)=0
t(f)=200

The values of q and qlim plotted in Figure PM-(13) indicate that this proportional controller has wide
oscillations before settling to a steady state, and the limits imposed on qlim are evident. The corre-
sponding plots of the system temperatures are presented in Figure PM-(14). 



Page PM-26 MATHEMATICAL SOFTWARE PACKAGES IN CHEMICAL ENGINEERING
Figure PM-13 Closed Loop Response for only Proportional 
Control.

Figure PM-14 Closed Loop Response for only Proportional 
Control.
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