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The Numerical Method of Lines for Partial
Differential Equations

by Michael B. Cutlip, University of Connecticut and
Mordechai Shacham, Ben-Gurion University of the Negev

The method of lines is a general technique for solving partial differential equations
(PDEs) by typically using finite difference relationships for the spatial derivatives and
ordinary differential equations for the time derivative.  William E. Schiesser at Lehigh
University has been a major proponent of the numerical method of lines, NMOL.1  This
solution approach can be very useful with undergraduates when this technique is
implemented in conjunction with a convenient ODE solver package such as
POLYMATH.2

A Problem in Unsteady-State Heat Transfer3

This approach can be illustrated by considering a problem in unsteady-state heat
conduction in a one-dimensional slab with one face insulated and constant thermal
conductivity as discussed by Geankoplis.4

Unsteady-state heat transfer in a slab in the x direction is described by the partial
differential equation
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where T is the temperature in K, t is the time in s, and α is the thermal diffusivity in m2/s
given by k/ρcp. In this treatment, the thermal conductivity k in W/m·K, the density ρ in
kg/m3, and the heat capacity cp in J/kg·K are all considered to be constant.

Consider that a slab of material with a thickness 1.00 m is supported on a
nonconducting insulation. This slab is shown in Figure 1. For a numerical problem
solution, the slab is divided into N sections with N + 1 node points. The slab is initially at a
uniform temperature of 100 °C. This gives the initial condition that all the internal node
temperatures are known at time t = 0.

Tn = 100 for n = 2 … (N + 1) at t = 0 (2)

                                               
1 Schiesser, W. E. The Numerical Method of Lines, San Diego, CA:  Academic Press, 1991.
2 POLYMATH is a numerical analysis package for IBM-compatible personal computers that is
available through the CACHE Corporation.  Information can be found at www.polymath-
software.com.
3 This problem is adapted in part from Cutlip, M. B., and M. Shacham Problem Solving in
Chemical Engineering with Numerical Methods, Upper Saddle River, NJ: Prentice Hall, 1999.
4 Geankoplis, C. J. Transport Processes and Unit Operations, 3rd ed. Englewood Cliffs,
NJ: Prentice Hall, 1993.
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Figure 1 - Unsteady-State Heat Conduction in a One-dimensional Slab

If at time zero the exposed surface is suddenly held constant at a temperature of
0 °C, this gives the boundary condition at node 1:

T1 = 0  for  t  ≥ 0 (3)
The other boundary condition is that the insulated boundary at node N + 1 allows

no heat conduction. Thus
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Note that this problem is equivalent to having a slab of twice the thickness exposed to the
initial temperature on both faces.

Problem (a) - Numerically solve Equation (1) with the initial and boundary
conditions of (2), (3), and (4) for the case where   αα = 2 ×× 10-5 m2/s and the slab
surface is held constant at T1 = 0 °C. This solution should utilize the numerical
method of lines with N = 10 sections. Plot the temperatures T2, T3, T4, and T5 as
functions of time to 6000 s.

For this problem with N = 10 sections of length ∆x = 0.1 m, Equation (1) can be
rewritten using a central difference formula for the second derivative as

( )112
2

)( −+ +−
∆

=
∂

∂
nnn

n TTT
xt

T α
  for (2 ≤ n ≤ 10) (5)

The boundary condition represented by Equation (4) can be written using a second-order
backward finite difference as
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that can be solved for T11 to yield
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The problem then requires the solution of Equations (3), (5), and (7) which
results in nine simultaneous ordinary differential equations and two explicit algebraic
equation for the 11 temperatures at the various nodes. This set of equations can be entered
into the POLYMATH Simultaneous Differential Equation Solver or some other ODE
solver. The resulting equation set for POLYMATH is

Equations:
d(T2)/d(t)=alpha/deltax^2*(T3-2*T2+T1)
d(T3)/d(t)=alpha/deltax^2*(T4-2*T3+T2)
d(T4)/d(t)=alpha/deltax^2*(T5-2*T4+T3)
d(T5)/d(t)=alpha/deltax^2*(T6-2*T5+T4)
d(T6)/d(t)=alpha/deltax^2*(T7-2*T6+T5)
d(T7)/d(t)=alpha/deltax^2*(T8-2*T7+T6)
d(T8)/d(t)=alpha/deltax^2*(T9-2*T8+T7)
d(T9)/d(t)=alpha/deltax^2*(T10-2*T9+T8)
d(T10)/d(t)=alpha/deltax^2*(T11-2*T10+T9)
alpha=2.e-5
T1=0
T11=(4*T10-T9)/3
deltax=.10

The initial condition for each of the T’s is 100 and the independent variable t varies
from 0 to 6000. The plots of the temperatures in the first four sections, node points 2 …
5, are shown in Figure 2. The transients in temperatures show an approach to steady state.
The numerical results are compared to the hand calculations of a finite difference solution
by Geankoplis4 (pp. 471–3) at the time of 6000 s in Table 1. These results indicate that
there is general agreement regarding the problem solution, but differences between the
temperatures at corresponding nodes increase as the insulated boundary of the slab is
approached.

Figure 2 – Temperature Profiles for Unsteady-state Heat Conduction in a
One-dimensional Slab
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Table 1 – Results for Unsteady-state Heat Transfer in a One-dimensional
Slab at t = 6000 s

Geankoplis4 Numerical Method of Lines
∆∆x = 0.2m

N = 5
∆∆x = 0.1 m

N = 10
∆∆x = 0.05 m

N = 20
∆∆x = 0.0333 m

N = 30

Distance
from Slab

Surface in m
n T n T n T n T

0 1 0.0 1 0.0 1 0.0 1 0.0
0.2 2 31.25 3 31.71 5 31.68 7 31.67
0.4 3 58.59 5 58.49 9 58.47 13 58.47
0.6 4 78.13 7 77.46 13 77.49 19 77.50
0.8 5 89.84 9 88.22 17 88.29 25 88.31
1.0 6 93.75 11 91.66 21 91.72 31 91.73

Problem (b) - Repeat Problem (a) with 20 sections and compare results with part
(a).

The validity of the numerical solution can be investigated by doubling the number
of sections for the NMOL solution. This involves adding an additional 10 equations given
by the relationship in Equation (5), modifying Equation (7) to calculate T21, and halving
∆x. The results for these changes in the POLYMATH equation set are also summarized in
Table 1 as are similar results for 30 sections. Here the numerical solutions are similar to
the previous solution in part (a) as the temperature profiles are virtually unchanged as the
number of section is increased.

Problem (c) - Repeat parts (a) and (b) for the case where heat convection is present
at the slab surface. The heat transfer coefficient is h = 25.0 W/m 2 ·K, and the
thermal conductivity is k = 10.0 W/m·K.

When convection is considered as the only mode of heat transfer to the surface of
the slab, an energy balance can be made at the interface that relates the energy input by
convection to the energy output by conduction. Thus at any time for transport normal to
the slab surface in the x direction
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where h is the convective heat transfer coefficient in W/m2·K and T0 is the ambient
temperature.

The preceding energy balance at the slab surface can be used to determine a
relationship between the slab surface temperature T1, the ambient temperature T0, and the
temperatures at internal node points. In this case, the second-order forward difference
equation for the first derivative can be applied at the surface
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and can be substituted into Equation (8) to yield
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The preceding equation can be solved for T1 to give
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and the above equation can be used to calculate T1 during the NMOL solution.
The resulting equation set for POLYMATH for ∆x = 0.10 m for N = 10 is

Equations:
d(T2)/d(t)=alpha/deltax^2*(T3-2*T2+T1)
d(T3)/d(t)=alpha/deltax^2*(T4-2*T3+T2)
d(T4)/d(t)=alpha/deltax^2*(T5-2*T4+T3)
d(T5)/d(t)=alpha/deltax^2*(T6-2*T5+T4)
d(T6)/d(t)=alpha/deltax^2*(T7-2*T6+T5)
d(T7)/d(t)=alpha/deltax^2*(T8-2*T7+T6)
d(T8)/d(t)=alpha/deltax^2*(T9-2*T8+T7)
d(T9)/d(t)=alpha/deltax^2*(T10-2*T9+T8)
d(T10)/d(t)=alpha/deltax^2*(T11-2*T10+T9)
alpha=2.e-5
deltax=.10
T11=(4*T10-T9)/3
h=25.
T0=0
k=10.
T1=(2*h*T0*deltax-k*T3+4*k*T2)/(3*k+2*h*deltax)

The preceding equation set can be integrated to any time t with POLYMATH or
another ODE solver. The results at t = 1500 s are summarized in Table 2.

Table 2 – Results for Unsteady-state Heat Transfer with Convection in a
One-dimensional Slab at t = 1500 s

Geankoplis4 Numerical Method of Lines
∆∆x = 0.2m

N = 5
∆∆x = 0.1 m

N = 10
∆∆x = 0.05 m

N = 20
∆∆x = 0.0333 m

N = 30

Distance
from Slab

Surface in m
n T n T n T n T

0 1 64.07 1 64.40 1 64.99 1 65.10
0.2 2 89.07 3 88.13 5 88.77 7 88.90
0.4 3 98.44 5 97.38 9 97.73 13 97.80
0.6 4 100.00 7 99.61 13 99.72 19 99.74
0.8 5 100.00 9 99.96 17 99.98 25 99.98
1.0 6 100.00 11 100.00 21 100.00 31 100.00

There is reasonable agreement between the various NMOL results as the number
of sections (smaller ∆x) is increased.  The slower response of the temperatures within the
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slab due to the additional convective resistance to heat transfer is evident when the
temperatures are compared to those presented in Table 1.  Selected temperatures are
presented in Figure 3 for the same locations and at the same scale as Figure 2.  The delays
in the responses of the various temperatures are quite evident.

Figure 3 – Temperature Profiles for Unsteady-state Heat Transfer with Convection
in a One-dimensional Slab

Problem Extensions
There are a number of extensions to this problem that can be solved with the

Numerical Method of Lines.  The thermal conductivity of the solid could vary with the
local temperature.  There could be an initial temperature profile in the solid. Radiative heat
transfer to the surface could be considered in addition to the convection.  The convective
heat transfer coefficient could be a function of the ∆T between the bulk gas and the slab
surface.  All these possibilities and more can be solved with the NMOL and an ODE
solver such as POLYMATH.  This type of problem can be used to effectively introduce
undergraduate students to transient heat transfer and instruct them to the numerical
solution of partial differential equations – a subject area that is not normally considered in
a typical curriculum.


