The Numerical Method of Lines for Partial
Differential Equations

by Michael B. Cutlip, University of Connecticut and
Mordechai Shacham, Ben-Gurion University of the Negev

The method of linesis a general technique for solving partial differential equations
(PDEs) by typically using finite difference relationships for the spatial derivatives and
ordinary differential equations for the time derivative. William E. Schiesser at Lehigh
University has been amajor proponent of the numerical method of lines, NMOL.! This
solution approach can be very useful with undergraduates when thistechniqueis
implemented in conjunction with a convenient ODE solver package such as
POLYMATH.?

A Problem in Unsteady-State Heat Transfer®

This approach can be illustrated by considering a problem in unsteady-state heat
conduction in aone-dimensiona slab with one face insulated and constant thermal
conductivity as discussed by Geankoplis.”

Unsteady-state heat transfer in adab in the x direction is described by the partial
differential equation

2
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where T isthe temperature in K, t isthetimein s, and a is the thermal diffusivity in m?/s
given by k/r c,. In this treatment, the thermal conductivity k in W/m-K, the density r in
kg/m®, and the heat capacity c,in Jkg-K are all considered to be constant.

Consider that a dlab of material with athickness 1.00 m is supported on a
nonconducting insulation. Thisdab is shown in Figure 1. For a numerical problem
solution, the dab isdivided into N sections with N + 1 node points. The dab isinitidly at a
uniform temperature of 100 °C. This givestheinitial condition that al the internal node
temperatures are known at timet = 0.

T,=100forn=2...(N+21)att=0 2

! Schiesser, W. E. The Numerical Method of Lines, San Diego, CA: Academic Press, 1991.

2 POLYMATH is anumerical analysis package for IBM-compatible personal computers that is
available through the CACHE Corporation. Information can be found at www.polymath-
software.com.

% This problem is adapted in part from Cutlip, M. B., and M. Shacham Problem Solving in
Chemical Engineering with Numerical Methods, Upper Saddle River, NJ: Prentice Hall, 1999.
4 Geankoplis, C. J. Transport Processes and Unit Operations, 3rd ed. Englewood Cliffs,

NJ: Prentice Hall, 1993.



I m
—-I-I b= Ax =01 m
I 1

I

Exposed Surface
Boundary Conditions; I
(a} & (b} T} is main |
tained at constant |
value Tl. | g

I

I

I

|

|
Y
I
|
|
1

-v:‘i

5

- G"-]
Yoz

(c}) Convective heat
transfer to {
Insulated Boundary
Lo T
| I 1 | I

1 2 3 4 5 6 7 8 9 1011

i

Figure 1 - Unsteady-State Heat Conduction in a One-dimensional Slab

If at time zero the exposed surface is suddenly held constant at a temperature of
0 °C, this gives the boundary condition at node 1.

T,=0forts30 3
The other boundary condition is that the insulated boundary at node N + 1 allows
no heat conduction. Thus

M=Ofort30 4
Ix

Note that this problem is equivalent to having a lab of twice the thickness exposed to the
initial temperature on both faces.

Problem (a) - Numerically solve Equation (1) with theinitial and boundary
conditions of (2), (3), and (4) for the casewhere a =2~ 10° m%sand the slab
surfaceis held constant at T, = 0 °C. This solution should utilize the numerical
method of lineswith N = 10 sections. Plot the temperatures T,, T3, T4, and Ts as
functions of time to 6000 s.

For this problem with N = 10 sections of length Dx = 0.1 m, Equation (1) can be
rewritten using a centra difference formulafor the second derivative as

T, _ a
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The boundary condition represented by Equation (4) can be written using a second-order

backward finite difference as

2T, +T.,) for (2£n£10) (5)
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that can be solved for Ty; to yield

T11 — (7)

0 (6)




The problem then requires the solution of Equations (3), (5), and (7) which
results in nine simultaneous ordinary differential equations and two explicit agebraic
equation for the 11 temperatures at the various nodes. This set of equations can be entered
into the POLYMATH Simultaneous Differential Equation Solver or some other ODE
solver. The resulting equation set for POLYMATH is

Equat i ons:
d(T2)/d(t)=al pha/del t ax"2*(T3-2*T2+T1)
d(T3)/d(t)=al pha/ del t ax"2* (T4-2*T3+T2)
d(T4)/d(t)=al pha/ del t ax"2* ( T5- 2* T4+T3)
d(T5)/d(t)=al pha/ del t ax"2* ( T6- 2* T5+T4)
d(T6)/d(t)=al pha/del tax"2*(T7-2*T6+T5)
d(T7)/d(t)=al pha/ del t ax"2*(T8-2*T7+T6)
d(T8)/d(t)=al pha/del t ax"2*(T9-2*T8+T7)
d(T9)/d(t)=al pha/del t ax"2*( T10- 2* T9+T8)
d(T10)/d(t) =al pha/del t ax"2*(T11- 2* T10+T9)
al pha=2.e-5

T1=0

T11=(4*T10-T9)/3

del t ax=. 10

The initial condition for each of the T'sis 100 and the independent variablet varies
from 0 to 6000. The plots of the temperatures in the first four sections, node points 2 ...
5, are shown in Figure 2. The transients in temperatures show an approach to steady state.
The numerical results are compared to the hand calculations of afinite difference solution
by Geankoplis® (pp. 471-3) at the time of 6000 s in Table 1. These results indicate that
there is general agreement regarding the problem solution, but differences between the
temperatures at corresponding nodes increase as the insulated boundary of the dabis
approached.
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Figure 2 — Temperature Profilesfor Unsteady-state Heat Conduction in a
One-dimensional Slab



Table 1 — Resultsfor Unsteady-state Heat Transfer in a One-dimensional
Slab at t = 6000 s

Distance | Geankoplis' Numerical Method of Lines
from Sab Dx = 0.2m Dx=0.1m Dx=0.05m | Dx=0.0333m
Surfacein m N=5 N=10 N=20 N =230
n T n T n T n T
0 1 0.0 1 0.0 1 0.0 1 0.0

0.2 2 31.25 3 31.71 5 31.68 7 31.67
0.4 3 58.59 5 58.49 9 58.47 13 58.47
0.6 4 78.13 7 77.46 13 77.49 19 77.50
0.8 5 89.84 9 8822 | 17 |8829| 25 88.31
1.0 6 93.75 11 91.66 21 91.72 31 91.73

Problem (b) - Repeat Problem (a) with 20 sections and compar e results with part
(a).

The validity of the numerica solution can be investigated by doubling the number
of sections for the NMOL solution. Thisinvolves adding an additional 10 equations given
by the relationship in Equation (5), modifying Equation (7) to calculate T,;, and halving
Dx. The results for these changesin the POLYMATH equation set are also summarized in
Table 1 as are similar results for 30 sections. Here the numerical solutions are similar to
the previous solution in part (a) as the temperature profiles are virtually unchanged as the
number of section isincreased.

Problem (c) - Repeat parts (a) and (b) for the case wher e heat convection is present
at the dlab surface. The heat transfer coefficient ish =25.0 W/m 2 K, and the
thermal conductivity isk = 10.0 W/m-K.

When convection is considered as the only mode of heat transfer to the surface of
the dab, an energy balance can be made at the interface that relates the energy input by
convection to the energy output by conduction. Thus at any time for transport normal to
the dlab surface in the x direction

h(T, - T,) =- kﬂﬂ ®)

x=0
where h is the convective heat transfer coefficient in W/m?-K and T, is the ambient
temperature.

The preceding energy balance at the dlab surface can be used to determine a
relationship between the dlab surface temperature T, the ambient temperature Ty, and the
temperatures at internal node points. In this case, the second-order forward difference
equation for the first derivative can be applied at the surface

ﬂ :(' T3+4T2' 3T1)
X o 2Dx
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and can be substituted into Equation (8) to yield

The preceding equation can be solved for T; to give

(' Ts +4T2 - 31—1)

h(To - Tl) =-k

T

_ 2hT,Dx- KT,

2Dx

+4KT,

3k + 2hDx

and the above equation can be used to calculate T, during the NMOL solution.
The resulting equation set for POLYMATH for Dx=0.10mfor N=10is

Equat i ons:

d(T2)/d(t)=al pha/ del t ax*2* ( T3-
d(T3)/d(t)=al pha/ del t ax2* ( T4-
d(T4)/ d(t)=al pha/ del t ax*2* ( T5-
d(T5)/ d(t) =al pha/ del t ax*2* ( T6-
d(T6)/ d(t) =al pha/ del t ax*2* ( T7-
d(T7)/d(t)=al pha/ del t ax*2* ( T8-
d(T8)/d(t) =al pha/ del t ax*2* ( TO-

2% T2+T1)
2% T3+T2)
2% T4+T3)
2* T5+T4)
2* T6+T5)
2% T7+T6)
2% T8+T7)

d(T9)/ d(t) =al pha/ del t ax*2* ( T10- 2* T9+T8)

d(T10)/ d(t) =al pha/ del t axA2* ( T11- 2* T10+T9)

al pha=2.e-5

del t ax=. 10
T11=(4*T10-T9)/3
h=25.

TO=0

k=10.

T1=(2*h* TO* del t ax- k* T3+4*k* T2) / ( 3*k+2* h* del t ax)

(10)

(11)

The preceding equation set can be integrated to any time t with POLYMATH or
another ODE solver. Theresults at t = 1500 s are summarized in Table 2.

Table 2 — Resultsfor Unsteady-state Heat Transfer with Convection in a

One-dimensional Slab at t = 1500 s

Distance | Geankoplis' Numerical Method of Lines
from Sab Dx = 0.2m Dx=0.1m Dx=0.05m | Dx=0.0333m
Surfacein m N=5 N=10 N=20 N =230
n T n T n T n T
0 1 64.07 1 64.40 1 64.99 1 65.10
0.2 2 89.07 3 88.13 5 88.77 7 88.90
0.4 3 98.44 5 97.38 9 97.73 | 13 97.80
0.6 4 100.00 7 99.61 13 99.72 19 99.74
0.8 5 |10000| 9 99.96 | 17 | 9998 | 25 99.98
1.0 6 |100.00| 11 |100.00| 21 |100.00| 31 | 100.00

There is reasonable agreement between the various NMOL results as the number
of sections (smaller Dx) isincreased. The slower response of the temperatures within the



dab due to the additional convective resistance to heat transfer is evident when the
temperatures are compared to those presented in Table 1. Selected temperatures are
presented in Figure 3 for the same locations and at the same scale as Figure 2. The delays
in the responses of the various temperatures are quite evident.
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Figure 3— Temperature Profilesfor Unsteady-state Heat Transfer with Convection
in a One-dimensional Slab

Problem Extensions

There are a number of extensions to this problem that can be solved with the
Numerical Method of Lines. The therma conductivity of the solid could vary with the
local temperature. There could be an initial temperature profile in the solid. Radiative heat
transfer to the surface could be considered in addition to the convection. The convective
heat transfer coefficient could be a function of the DT between the bulk gas and the dab
surface. All these possibilities and more can be solved with the NMOL and an ODE
solver such as POLYMATH. Thistype of problem can be used to effectively introduce
undergraduate students to transient heat transfer and instruct them to the numerical
solution of partial differential equations — a subject areathat is not normally considered in
atypical curriculum.



