A COLLECTION OF TEN NUMERICAL PROBLEMS IN CHEMICAL ENGINEERING SOLVED BY VARIOUS MATHEMATICAL SOFTWARE PACKAGES

Michael B. Cutlip, Department of Chemical Engineering, Box U-222, University of Connecticut, Storrs, CT 06269-3222 (mcutlip@uconnvm.uconn.edu)

John J. Hwalek, Department of Chemical Engineering, University of Maine, Orono, ME 04469 (hwalek@maine.maine.edu)

H. Eric Nuttall, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87134-1341 (nuttall@unm.edu)

Mordechai Shacham, Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel 84105 (shacham@bgumail.bgu.ac.il)

Joseph Brule, John Widmann, Tae Han, and Bruce Finlayson, Department of Chemical Engineering, University of Washington, Seattle, WA 98195-1750 (finlayson@cheme.washington.edu)

Edward M. Rosen, EMR Technology Group, 13022 Musket Ct., St. Louis, MO 63146 (EMRose@compuserve.com)

Ross Taylor, Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699-5705 (taylor@sun.soe.clarkson.edu)

ABSTRACT

Current personal computers provide exceptional computing capabilities to engineering students that can greatly improve speed and accuracy during sophisticated problem solving. The need to actually create programs for mathematical problem solving has been reduced if not eliminated by available mathematical software packages. This paper summarizes a collection of ten typical problems from throughout the chemical engineering curriculum that requires numerical solutions. These problems involve most of the standard numerical methods familiar to undergraduate engineering students. Complete problem solution sets have been generated by experienced users in six of the leading mathematical software packages. These detailed solutions including a write up and the electronic files for each package are available through the INTERNET at www.che.utexas.edu/cache and via FTP from ftp.engr.uconn.edu/pub/ASEE/. The written materials illustrate the differences in these mathematical software packages. The electronic files allow hands-on experience with the packages during execution of the actual software packages. This paper and the provided resources should be of considerable value during mathematical problem solving and/ or the selection of a package for classroom or personal use.

INTRODUCTION

Session 12 of the Chemical Engineering Summer School* at Snowbird, Utah on

*The Ch. E. Summer School was sponsored by the Chemical Engineering Division of the American Society for Engineering Education.
August 13, 1997 was concerned with “The Use of Mathematical Software in Chemical Engineering.” This session provided a major overview of three major mathematical software packages (MathCAD, Mathematica, and POLYMATH), and a set of ten problems was distributed that utilizes the basic numerical methods in problems that are appropriate to a variety of chemical engineering subject areas. The problems are titled according to the chemical engineering principles that are used, and the numerical methods required by the mathematical modeling effort are identified. This problem set is summarized in Table 1.

Table 1 Problem Set for Use with Mathematical Software Packages

<table>
<thead>
<tr>
<th>SUBJECT AREA</th>
<th>PROBLEM TITLE</th>
<th>MATHEMATICAL MODEL</th>
<th>PROBLEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Ch. E.</td>
<td>Molar Volume and Compressibility Factor from Van Der Waals Equation</td>
<td>Single Nonlinear Equation</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Ch. E.</td>
<td>Steady State Material Balances on a Separation Train*</td>
<td>Simultaneous Linear Equations</td>
<td>2</td>
</tr>
<tr>
<td>Mathematical Methods</td>
<td>Vapor Pressure Data Representation by Polynomials and Equations</td>
<td>Polynomial Fitting, Linear and Nonlinear Regression</td>
<td>3</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>Reaction Equilibrium for Multiple Gas Phase Reactions*</td>
<td>Simultaneous Nonlinear Equations</td>
<td>4</td>
</tr>
<tr>
<td>Fluid Dynamics</td>
<td>Terminal Velocity of Falling Particles</td>
<td>Single Nonlinear Equation</td>
<td>5</td>
</tr>
<tr>
<td>Heat Transfer</td>
<td>Unsteady State Heat Exchange in a Series of Agitated Tanks*</td>
<td>Simultaneous ODE’s with known initial conditions.</td>
<td>6</td>
</tr>
<tr>
<td>Mass Transfer</td>
<td>Diffusion with Chemical Reaction in a One Dimensional Slab</td>
<td>Simultaneous ODE’s with split boundary conditions.</td>
<td>7</td>
</tr>
<tr>
<td>Separation Processes</td>
<td>Binary Batch Distillation**</td>
<td>Simultaneous Differential and Non-linear Algebraic Equations</td>
<td>8</td>
</tr>
<tr>
<td>Reaction Engineering</td>
<td>Reversible, Exothermic, Gas Phase Reaction in a Catalytic Reactor*</td>
<td>Simultaneous ODE’s and Algebraic Equations</td>
<td>9</td>
</tr>
<tr>
<td>Process Dynamics and Control</td>
<td>Dynamics of a Heated Tank with PI Temperature Control**</td>
<td>Simultaneous Stiff ODE’s</td>
<td>10</td>
</tr>
</tbody>
</table>

* Problem originally suggested by H. S. Fogler of the University of Michigan
** Problem preparation assistance by N. Brauner of Tel-Aviv University
ADDITIONAL CONTRIBUTED SOLUTION SETS

After the ASEE Summer School, three more sets of solutions were provided by authors who had considerable experience with additional mathematical software packages. The current total is now six packages, and the packages (listed alphabetically) and authors are given below.

Excel - Edward M. Rosen, EMR Technology Group

Maple - Ross Taylor, Clarkson University

MathCAD - John J. Hwalek, University of Maine

MATLAB - Joseph Brule, John Widmann, Tae Han, and Bruce Finlayson, Department of Chemical Engineering, University of Washington

Mathematica - H. Eric Nuttall, University of New Mexico

POLYMATH - Michael B. Cutlip, University of Connecticut and Mordechai Shacham, Ben Gurion University of the Negev

The complete problem set has now been solved with the following mathematical software packages: Excel\(^*\), Maple\(^1\), MathCAD\(^2\), MATLAB\(^*\), Mathematica\(^*\), and Polymath\(^*\). As a service to the academic community, the CACHE Corporation** provides this problem set as well as the individual package writeups and problem solution files for downloading on the WWW at http://www.che.utexas.edu/cache. The problem set and details of the various solutions (about 300 pages) are given in separate documents as Adobe PDF files. The problem solution files can be executed with the particular mathematical software package. Alternately, all of these materials can also be obtained from an FTP site at the University of Connecticut: ftp.engr.uconn.edu/pub/ASEE/

USE OF THE PROBLEM SET

The complete problem writeups from the various packages allow potential users to examine the detailed treatment of a variety of typical problems. This method of presentation should indicate the convenience and strengths/weaknesses of each of the mathematical software packages. The problem files can be executed with the corresponding software package to obtain a sense of the package operation. Parameters can be changed, and the problems can be resolved. These activities should be very helpful in the evaluation and selection of appropriate software packages for personal or educational use.

Additionally attractive for engineering faculty is that individual problems from the problem set can be easily integrated into existing coursework. Problem variations or even open-ended problems can quickly be created. This problem set and the various writeups should be helpful to engineering faculty who are continually faced with the selection of a mathematical problem solving package for

\(^*\) Excel is a trademark of Microsoft Corporation (http://www.microsoft.com)

\(^1\) Maple is a trademark of Waterloo Maple, Inc. (http://maplesoft.com)

\(^2\) MathCAD is a trademark of Mathsoft, Inc. (http://www.mathsoft.com)

\(^*\) MATLAB is a trademark of The Math Works, Inc. (http://www.mathworks.com)

\(^*\) Mathematica is a trademark of Wolfram Research, Inc. (http://www.wolfram.com)

\(^*\) POLYMATH is copyrighted by M. B. Cutlip and M. Shacham (http://www.che.utexas/cache/)

** The CACHE Corporation is non-profit educational corporation supported by most chemical engineering departments and many chemical corporations. CACHE stands for computer aides for chemical engineering. CACHE can be contacted at P. O. Box 7939, Austin, TX 78713-7939, Phone: (512)471-4933 Fax: (512)295-4498, E-mail: cache@nts.cc.utexas.edu, Internet: http://www.che.utexas/cache/
use in conjunction with their courses.

THE TEN PROBLEM SET
The complete problem set is given in the Appendix to this paper. Each problem statement carefully identifies the numerical methods used, the concepts utilized, and the general problem content.

APPENDIX
(Note to Reviewers - The Appendix which follows can either be printed with the article or provided by the authors as a Acrobat PDF file for the disk which normally accompanies the CAEE Journal. File size for the PDF document is about 135 Kb.)
1. **Molar Volume and Compressibility Factor from Van Der Waals Equation**

1.1 **Numerical Methods**
Solution of a single nonlinear algebraic equation.

1.2 **Concepts Utilized**
Use of the van der Waals equation of state to calculate molar volume and compressibility factor for a gas.

1.3 **Course Usage**
Introduction to Chemical Engineering, Thermodynamics.

1.4 **Problem Statement**
The ideal gas law can represent the pressure-volume-temperature (PVT) relationship of gases only at low (near atmospheric) pressures. For higher pressures more complex equations of state should be used. The calculation of the molar volume and the compressibility factor using complex equations of state typically requires a numerical solution when the pressure and temperature are specified.

The van der Waals equation of state is given by

\[
(P + \frac{a}{V^2})(V - b) = RT
\]

where

\[
a = \frac{27}{64} \left(\frac{R T_c^2}{P_c} \right)
\]

and

\[
b = \frac{R T_c}{8 P_c}
\]

The variables are defined by
- \(P\) = pressure in atm
- \(V\) = molar volume in liters/g-mol
- \(T\) = temperature in K
- \(R\) = gas constant (\(R = 0.08206\) atm·liter/g-mol·K)
- \(T_c\) = critical temperature (405.5 K for ammonia)
- \(P_c\) = critical pressure (111.3 atm for ammonia)
Reduced pressure is defined as

\[P_r = \frac{P}{P_c} \] \hspace{1cm} (4)

and the compressibility factor is given by

\[Z = \frac{P V}{R T} \] \hspace{1cm} (5)

(a) Calculate the molar volume and compressibility factor for gaseous ammonia at a pressure \(P = 56 \text{ atm} \) and a temperature \(T = 450 \text{ K} \) using the van der Waals equation of state.

(b) Repeat the calculations for the following reduced pressures: \(P_r = 1, 2, 4, 10, \text{ and } 20 \).

(c) How does the compressibility factor vary as a function of \(P_r \)?
2. **Steady State Material Balances on a Separation Train**

2.1 Numerical Methods
Solution of simultaneous linear equations.

2.2 Concepts Utilized
Material balances on a steady state process with no recycle.

2.3 Course Useage
Introduction to Chemical Engineering.

2.4 Problem Statement
Xylene, styrene, toluene and benzene are to be separated with the array of distillation columns that is shown below where F, D, B, D1, B1, D2 and B2 are the molar flow rates in mol/min.

![Separation Train Diagram]

Figure 1 Separation Train
Material balances on individual components on the overall separation train yield the equation set

\[
\begin{align*}
\text{Xylene:} & \quad 0.07D_1 + 0.18B_1 + 0.15D_2 + 0.24B_2 = 0.15 \times 70 \\
\text{Styrene:} & \quad 0.04D_1 + 0.24B_1 + 0.10D_2 + 0.65B_2 = 0.25 \times 70 \\
\text{Toluene:} & \quad 0.54D_1 + 0.42B_1 + 0.54D_2 + 0.10B_2 = 0.40 \times 70 \\
\text{Benzene:} & \quad 0.35D_1 + 0.16B_1 + 0.21D_2 + 0.01B_2 = 0.20 \times 70
\end{align*}
\]

Overall balances and individual component balances on column \#2 can be used to determine the molar flow rate and mole fractions from the equation of stream D from

\[
\begin{align*}
\text{Molar Flow Rates: } D &= D_1 + B_1 \\
\text{Xylene: } X_{Dx}D &= 0.07D_1 + 0.18B_1 \\
\text{Styrene: } X_{Ds}D &= 0.04D_1 + 0.24B_1 \\
\text{Toluene: } X_{Dt}D &= 0.54D_1 + 0.42B_1 \\
\text{Benzene: } X_{Db}D &= 0.35D_1 + 0.16B_1
\end{align*}
\]

where \(X_{Dx}\) = mole fraction of Xylene, \(X_{Ds}\) = mole fraction of Styrene, \(X_{Dt}\) = mole fraction of Toluene, and \(X_{Db}\) = mole fraction of Benzene.

Similarly, overall balances and individual component balances on column \#3 can be used to determine the molar flow rate and mole fractions of stream B from the equation set

\[
\begin{align*}
\text{Molar Flow Rates: } B &= D_2 + B_2 \\
\text{Xylene: } X_{Bx}B &= 0.15D_2 + 0.24B_2 \\
\text{Styrene: } X_{Bs}B &= 0.10D_2 + 0.65B_2 \\
\text{Toluene: } X_{Bt}B &= 0.54D_2 + 0.10B_2 \\
\text{Benzene: } X_{Bb}B &= 0.21D_2 + 0.01B_2
\end{align*}
\]

(a) Calculate the molar flow rates of streams \(D_1, D_2, B_1\) and \(B_2\).
(b) Determine the molar flow rates and compositions of streams \(B\) and \(D\).
3. Vapor Pressure Data Representation by Polynomials and Equations

3.1 Numerical Methods
Regression of polynomials of various degrees. Linear regression of mathematical models with variable transformations. Nonlinear regression.

3.2 Concepts Utilized
Use of polynomials, a modified Clausius-Clapeyron equation, and the Antoine equation to model vapor pressure versus temperature data

3.3 Course Usage
Mathematical Methods, Thermodynamics.

3.4 Problem Statement
Table (2) presents data of vapor pressure versus temperature for benzene. Some design calculations require these data to be accurately correlated by various algebraic expressions which provide \(P \) in mmHg as a function of \(T \) in °C.

A simple polynomial is often used as an empirical modeling equation. This can be written in general form for this problem as

\[
P = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + ... + a_n T^n \tag{9}
\]

where \(a_0, \ldots, a_n \) are the parameters (coefficients) to be determined by regression and \(n \) is the degree of the polynomial. Typically the degree of the polynomial is selected which gives the best data represen-
The Clausius-Clapeyron equation which is useful for the correlation of vapor pressure data is given by

$$\log(P) = A - \frac{B}{T + 273.15} \quad (10)$$

where P is the vapor pressure in mmHg and T is the temperature in °C. Note that the denominator is just the absolute temperature in K. Both A and B are the parameters of the equation which are typically determined by regression.

The Antoine equation which is widely used for the representation of vapor pressure data is given by

$$\log(P) = A - \frac{B}{T + C} \quad (11)$$

where typically P is the vapor pressure in mmHg and T is the temperature in °C. Note that this equation has parameters A, B, and C which must be determined by nonlinear regression as it is not possible to linearize this equation. The Antoine equation is equivalent to the Clausius-Clapeyron equation when $C = 273.15$.

(a) Regress the data with polynomials having the form of Equation (9). Determine the degree of polynomial which best represents the data.
(b) Regress the data using linear regression on Equation (10), the Clausius-Clapeyron equation.
(c) Regress the data using nonlinear regression on Equation (11), the Antoine equation.
4. **REACTION EQUILIBRIUM FOR MULTIPLE GAS PHASE REACTIONS**

4.1 Numerical Methods

Solution of systems of nonlinear algebraic equations.

4.2 Concepts Utilized

Complex chemical equilibrium calculations involving multiple reactions.

4.3 Course Useage

Thermodynamics or Reaction Engineering.

4.4 Problem Statement

The following reactions are taking place in a constant volume, gas-phase batch reactor.

\[A + B \leftrightarrow C + D \]
\[B + C \leftrightarrow X + Y \]
\[A + X \leftrightarrow Z \]

A system of algebraic equations describes the equilibrium of the above reactions. The nonlinear equilibrium relationships utilize the thermodynamic equilibrium expressions, and the linear relationships have been obtained from the stoichiometry of the reactions.

\[
\begin{align*}
K_{C1} &= \frac{C_C C_D}{C_A C_B} \\
K_{C2} &= \frac{C_X C_Y}{C_B C_C} \\
K_{C3} &= \frac{C_Z}{C_A C_X} \\
C_A &= C_{A0} - C_D - C_Z \\
C_B &= C_{B0} - C_D - C_Y \\
C_C &= C_D - C_Y \\
C_Y &= C_X + C_Z
\end{align*}
\]

In this equation set \(C_A, C_B, C_C, C_D, C_X, C_Y \) and \(C_Z \) are concentrations of the various species at equilibrium resulting from initial concentrations of only \(C_{A0} \) and \(C_{B0} \). The equilibrium constants \(K_{C1}, K_{C2} \) and \(K_{C3} \) have known values.

Solve this system of equations when \(C_{A0} = C_{B0} = 1.5, K_{C1} = 1.06, K_{C2} = 2.63 \) and \(K_{C3} = 5 \) starting from four sets of initial estimates.

(a) \(C_D = C_X = C_Z = 0 \)

(b) \(C_D = C_X = C_Z = 1 \)

(c) \(C_D = C_X = C_Z = 10 \)
5. **Terminal Velocity of Falling Particles**

5.1 Numerical Methods
Solution of a single nonlinear algebraic equation.

5.2 Concepts Utilized
Calculation of terminal velocity of solid particles falling in fluids under the force of gravity.

5.3 Course Usage
Fluid dynamics.

5.4 Problem Statement
A simple force balance on a spherical particle reaching terminal velocity in a fluid is given by

\[v_t = \sqrt{\frac{4g(\rho_p - \rho)v_t}{3C_D\rho}} \tag{13} \]

where \(v_t \) is the terminal velocity in m/s, \(g \) is the acceleration of gravity given by \(g = 9.80665 \text{ m/s}^2 \), \(\rho_p \) is the particles density in kg/m\(^3\), \(\rho \) is the fluid density in kg/m\(^3\), \(D_p \) is the diameter of the spherical particle in m and \(C_D \) is a dimensionless drag coefficient.

The drag coefficient on a spherical particle at terminal velocity varies with the Reynolds number (Re) as follows (pp. 5-63, 5-64 in Perry\(^3\)).

\[C_D = \frac{24}{Re} \quad \text{for} \quad Re < 0.1 \tag{14} \]

\[C_D = \frac{24}{Re} (1 + 0.14Re^{0.7}) \quad \text{for} \quad 0.1 \leq Re \leq 1000 \tag{15} \]

\[C_D = 0.44 \quad \text{for} \quad 1000 < Re \leq 350000 \tag{16} \]

\[C_D = 0.19 - 8 \times 10^4 / Re \quad \text{for} \quad 35000 < Re \tag{17} \]

where \(Re = \frac{D_p v_t \rho}{\mu} \) and \(\mu \) is the viscosity in Pa·s or kg/m·s.

(a) Calculate the terminal velocity for particles of coal with \(\rho_p = 1800 \text{ kg/m}^3 \) and \(D_p = 0.208 \times 10^{-3} \text{ m} \) falling in water at \(T = 298.15 \text{ K} \) where \(\rho = 994.6 \text{ kg/m}^3 \) and \(\mu = 8.931 \times 10^{-4} \text{ kg/m·s} \).

(b) Estimate the terminal velocity of the coal particles in water within a centrifugal separator where the acceleration is 30.0 g.
6. HEAT EXCHANGE IN A SERIES OF TANKS

6.1 Numerical Methods
Solution of simultaneous first order ordinary differential equations.

6.2 Concepts Utilized
Unsteady state energy balances, dynamic response of well mixed heated tanks in series.

6.3 Course Useage
Heat Transfer.

6.4 Problem Statement
Three tanks in series are used to preheat a multicomponent oil solution before it is fed to a distillation column for separation as shown in Figure (2). Each tank is initially filled with 1000 kg of oil at 20°C. Saturated steam at a temperature of 250°C condenses within coils immersed in each tank. The oil is fed into the first tank at the rate of 100 kg/min and overflows into the second and the third tanks at the same flow rate. The temperature of the oil fed to the first tank is 20°C. The tanks are well mixed so that the temperature inside the tanks is uniform, and the outlet stream temperature is the temperature within the tank. The heat capacity, \(C_p \), of the oil is 2.0 KJ/kg. For a particular tank, the rate at which heat is transferred to the oil from the steam coil is given by the expression

\[
Q = UA(T_{\text{steam}} - T)
\]

where \(UA = 10 \text{ kJ/min} \cdot \text{°C} \) is the product of the heat transfer coefficient and the area of the coil for each tank, \(T \) = temperature of the oil in the tank in °C, and \(Q \) = rate of heat transferred in kJ/min.

Energy balances can be made on each of the individual tanks. In these balances, the mass flow rate to each tank will remain at the same fixed value. Thus \(W = W_1 = W_2 = W_3 \). The mass in each tank will be assumed constant as the tank volume and oil density are assumed to be constant. Thus \(M = M_1 = M_2 = M_3 \). For the first tank, the energy balance can be expressed by

\[
MC_p \frac{dT_1}{dt} = WC_p T_0 + UA(T_{\text{steam}} - T_1) - WC_p T_1
\]

Figure 2 Series of Tanks for Oil Heating

Note that the unsteady state mass balance is not needed for tank 1 or any other tanks since the mass
in each tank does not change with time. The above differential equation can be rearranged and explicitly solved for the derivative which is the usual format for numerical solution.

\[
\frac{dT_1}{dt} = \frac{[WC_p(T_0 - T_1) + UA(T_{steam} - T_1)]/(MC_p)}{(MC_p)}
\] (20)

Similarly for the second tank

\[
\frac{dT_2}{dt} = \frac{[WC_p(T_1 - T_2) + UA(T_{steam} - T_2)]/(MC_p)}{(MC_p)}
\] (21)

For the third tank

\[
\frac{dT_3}{dt} = \frac{[WC_p(T_2 - T_3) + UA(T_{steam} - T_3)]/(MC_p)}{(MC_p)}
\] (22)

Determine the steady state temperatures in all three tanks. What time interval will be required for \(T_3\) to reach 99% of this steady state value during startup?
7. **DIFFUSION WITH CHEMICAL REACTION IN A ONE DIMENSIONAL SLAB**

7.1 Numerical Methods
Solution of second order ordinary differential equations with two point boundary conditions.

7.2 Concepts Utilized
Methods for solving second order ordinary differential equations with two point boundary values typically used in transport phenomena and reaction kinetics.

7.3 Course Usage
Transport Phenomena and Reaction Engineering.

7.4 Problem Statement
The diffusion and simultaneous first order irreversible chemical reaction in a single phase containing only reactant A and product B results in a second order ordinary differential equation given by

\[
\frac{d^2 C_A}{dz^2} = \frac{k}{D_{AB}} C_A
\]

(23)

where \(C_A \) is the concentration of reactant A (kg mol/m^3), \(z \) is the distance variable (m), \(k \) is the homogeneous reaction rate constant (s^{-1}) and \(D_{AB} \) is the binary diffusion coefficient (m^2/s). A typical geometry for Equation (23) is that of a one dimension layer which has its surface exposed to a known concentration and allows no diffusion across its bottom surface. Thus the initial and boundary conditions are

\[
C_A = C_{A0} \quad \text{for} \quad z = 0
\]

(24)

\[
\frac{dC_A}{dz} = 0 \quad \text{for} \quad z = L
\]

(25)

where \(C_{A0} \) is the constant concentration at the surface (\(z = 0 \)) and there is no transport across the bottom surface (\(z = L \)) so the derivative is zero.

This differential equation has an analytical solution given by

\[
C_A = C_{A0} \frac{\cosh[L(\sqrt{k/D_{AB}})(1-z/L)]}{\cosh(L\sqrt{k/D_{AB}})}
\]

(26)
(a) Numerically solve Equation (23) with the boundary conditions of (24) and (25) for the case where \(C_{A0} = 0.2 \text{ kg mol/m}^3, k = 10^{-3} \text{ s}^{-1}, D_{AB} = 1.2 \times 10^{-9} \text{ m}^2/\text{s}, \text{ and } L = 10^{-3} \text{ m}. \) This solution should utilize an ODE solver with a shooting technique and employ Newton’s method or some other technique for converging on the boundary condition given by Equation (25).

(b) Compare the concentration profiles over the thickness as predicted by the numerical solution of (a) with the analytical solution of Equation (26).
8. **Binary Batch Distillation**

8.1 Numerical Methods

Solution of a system of equations comprised of ordinary differential equations and nonlinear algebraic equations.

8.2 Concepts Utilized

Batch distillation of an ideal binary mixture.

8.3 Course Usage

Separation Processes.

8.4 Problem Statement

For a binary batch distillation process involving two components designated 1 and 2, the moles of liquid remaining, L, as a function of the mole fraction of the component 2, x_2, can be expressed by the following equation

$$\frac{dL}{dx_2} = \frac{L}{x_2(k_2 - 1)}$$ \hspace{1cm} (27)

where k_2 is the vapor liquid equilibrium ratio for component 2. If the system may be considered ideal, the vapor liquid equilibrium ratio can be calculated from $k_i = \frac{P_i}{P}$ where P_i is the vapor pressure of component i and P is the total pressure.

A common vapor pressure model is the Antoine equation which utilizes three parameters A, B, and C for component i as given below where T is the temperature in °C.

$$P_i = 10^{\left(\frac{A - \frac{B}{T + C}}{T + C}\right)}$$ \hspace{1cm} (28)

The temperature in the batch still follow the bubble point curve. The bubble point temperature is defined by the implicit algebraic equation which can be written using the vapor liquid equilibrium ratios as

$$k_1x_1 + k_2x_2 = 1$$ \hspace{1cm} (29)

Consider a binary mixture of benzene (component 1) and toluene (component 2) which is to be considered as ideal. The Antoine equation constants for benzene are $A_1 = 6.90565$, $B_1 = 1211.033$ and $C_1 = 220.79$. For toluene $A_2 = 6.95464$, $B_2 = 1344.8$ and $C_2 = 219.482$ (Dean1). P is the pressure in mm Hg and T the temperature in °C.

The batch distillation of benzene (component 1) and toluene (component 2) mixture is being carried out at a pressure of 1.2 atm. Initially, there are 100 moles of liquid in the still, comprised of 60% benzene and 40% toluene (mole fraction basis). Calculate the amount of liquid remaining in the still when concentration of toluene reaches 80%.
9. **REVERSIBLE, EXOTHERMIC, GAS PHASE REACTION IN A CATALYTIC REACTOR**

9.1 **Numerical Methods**
Simultaneous ordinary differential equations with known initial conditions.

9.2 **Concepts Utilized**
Design of a gas phase catalytic reactor with pressure drop for a first order reversible gas phase reaction.

9.3 **Course Useage**
Reaction Engineering

9.4 **Problem Statement**
The elementary gas phase reaction \(2A \leftrightarrow C\) is carried out in a packed bed reactor. There is a heat exchanger surrounding the reactor, and there is a pressure drop along the length of the reactor.

![Packed Bed Catalytic Reactor](image)

Figure 3 Packed Bed Catalytic Reactor

The various parameters values for this reactor design problem are summarized in Table (3).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{PA})</td>
<td>40.0 J/g-mol·K</td>
</tr>
<tr>
<td>(C_{PC})</td>
<td>80.0 J/g-mol·K</td>
</tr>
<tr>
<td>(\Delta H_R)</td>
<td>(-40,000) J/g-mol</td>
</tr>
<tr>
<td>(E_A)</td>
<td>41,800 J/g-mol·K</td>
</tr>
<tr>
<td>(k)</td>
<td>(0.5) dm(^6)/kg·min·mol @450 K</td>
</tr>
<tr>
<td>(K_C)</td>
<td>25,000 dm(^3)/g-mol @450 K</td>
</tr>
<tr>
<td>(C_{A0})</td>
<td>0.271 g-mol/dm(^3)</td>
</tr>
<tr>
<td>(T_0)</td>
<td>450 K</td>
</tr>
<tr>
<td>(R)</td>
<td>8.314 J/g-mol·K</td>
</tr>
<tr>
<td>(F_{A0})</td>
<td>5.0 g-mol/min</td>
</tr>
<tr>
<td>(U_a)</td>
<td>0.8 J/kg·min·K</td>
</tr>
<tr>
<td>(T_a)</td>
<td>500 K</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.015 kg(^{-1})</td>
</tr>
<tr>
<td>(n_a)</td>
<td>1.0 (Pure A feed)</td>
</tr>
<tr>
<td>(P_0)</td>
<td>10 atm</td>
</tr>
</tbody>
</table>
(a) Plot the conversion (X), reduced pressure (y) and temperature (T × 10^{-3}) along the reactor from W = 0 kg up to W = 20 kg.

(b) Around 16 kg of catalyst you will observe a "knee" in the conversion profile. Explain why this knee occurs and what parameters affect the knee.

(c) Plot the concentration profiles for reactant A and product C from W = 0 kg up to W = 20 kg.

Addition Information

The notation used here and the following equations and relationships for this particular problem are adapted from the textbook by Fogler. The problem is to be worked assuming plug flow with no radial gradients of concentrations and temperature at any location within the catalyst bed. The reactor design will use the conversion of A designated by X and the temperature T which are both functions of location within the catalyst bed specified by the catalyst weight W.

The general reactor design expression for a catalytic reaction in terms of conversion is a mole balance on reactant A given by

\[F_{A0} \frac{dX}{dW} = -r'_A \]

The simple catalytic reaction rate expression for this reversible reaction is

\[-r'_A = k \left[C_A^2 \frac{C}{K_C} \right] \]

where the rate constant is based on reactant A and follows the Arrhenius expression

\[k = k(\Theta = 450^\circ K) \exp \frac{E_A}{R} \left[\frac{1}{450} - \frac{1}{T} \right] \]

and the equilibrium constant variation with temperature can be determined from van't Hoff's equation with \(\Delta C_P = 0 \)

\[K_C = K_C(\Theta = 450^\circ K) \exp \frac{\Delta H}{R} \left[\frac{1}{450} - \frac{1}{T} \right] \]

The stoichiometry for \(2A \Leftrightarrow C \) and the stoichiometric table for a gas allow the concentrations to be expressed as a function of conversion and temperature while allowing for volumetric changes due to decrease in moles during the reaction. Therefore

\[C_A = C_{A0} \left(\frac{1 - X}{1 + \varepsilon X} \right) \frac{P}{P_0} \frac{T}{T_0} = C_{A0} \left(\frac{1 - X}{1 - 0.5X} \right) y \frac{T_0}{T} \]

and

\[y = \frac{P}{P_0} \]

\[C_C = \left(\frac{0.5 C_{A0} X}{1 - 0.5X} \right) \frac{T_0}{T} \]
The pressure drop can be expressed as a differential equation (see Fogler2 for details)

\[
\frac{d\left(\frac{P}{P_0}\right)}{dW} = \frac{-\alpha(1 + \epsilon X)}{2} \frac{P_0 T}{P T_0}
\]
(36)

or

\[
\frac{dy}{dW} = \frac{-\alpha(1 - 0.5 X)}{2y} \frac{T}{T_0}
\]
(37)

The general energy balance may be written at

\[
\frac{dT}{dW} = \frac{U_a(T_a - T) + r'_A(\Delta H_R)}{F_{A0}(\sum \theta_i C_{P_i} + X \Delta C_P)}
\]
(38)

which for only reactant A in the reactor feed simplifies to

\[
\frac{dT}{dW} = \frac{U_a(T_a - T) + r'_A(\Delta H_R)}{F_{A0}(\Delta C_P)}
\]
(39)
10. **DYNAMICS OF A HEATED TANK WITH PI TEMPERATURE CONTROL**

10.1 **Numerical Methods**
Solution of ordinary differential equations, generation of step functions, simulation of a proportional integral controller.

10.2 **Concepts Utilized**
Closed loop dynamics of a process including first order lag and dead time. Padé approximation of time delay.

10.3 **Course Usage**
Process Dynamics and Control

10.4 **Problem Statement**
A continuous process system consisting of a well-stirred tank, heater and PI temperature controller is depicted in Figure (4). The feed stream of liquid with density of \(\rho \) in kg/m\(^3\) and heat capacity of \(C \) in kJ / kg °C flows into the heated tank at a constant rate of \(W \) in kg/min and temperature \(T_i \) in °C. The volume of the tank is \(V \) in m\(^3\). It is desired to heat this stream to a higher set point temperature \(T_r \) in °C. The outlet temperature is measured by a thermocouple as \(T_m \) in °C, and the required heater input \(q \) in kJ/min is adjusted by a PI temperature controller. The control objective is to maintain \(T_0 = T_r \) in the presence of a change in inlet temperature \(T_i \) which differs from the steady state design temperature of \(T_{is} \).

![Figure 4 Well Mixed Tank with Heater and Temperature Controller](image-url)
Modeling and Control Equations

An energy balance on the stirred tank yields

$$\frac{dT}{dt} = \frac{WC_p(T_i - T) + q}{\rho V C_p}$$ \hspace{1cm} (40)

with initial condition $T = T_r$ at $t = 0$ which corresponds to steady state operation at the set point temperature T_r.

The thermocouple for temperature sensing in the outlet stream is described by a first order system plus the dead time τ_d which is the time for the output flow to reach the measurement point. The dead time expression is given by

$$T_0(t) = T(t - \tau_d)$$ \hspace{1cm} (41)

The effect of dead time may be calculated for this situation by the Padé approximation which is a first order differential equation for the measured temperature.

$$\frac{dT_0}{dt} = \left[T - T_0 - \left(\frac{\tau_d}{2} \right) \frac{dT}{dt} \right] \frac{2}{\tau_d} \quad \text{I. C. } T_0 = T_r \text{ at } t = 0 \text{ (steady state)}$$ \hspace{1cm} (42)

The above equation is used to generated the temperature input to the thermocouple, T_0.

The thermocouple shielding and electronics are modeled by a first order system for the input temperature T_0 given by

$$\frac{dT_m}{dt} = \frac{T_0 - T_m}{\tau_m} \quad \text{I. C. } T_m = T_r \text{ at } t = 0 \text{ (steady state)}$$ \hspace{1cm} (43)

where the thermocouple time constant τ_m is known.

The energy input to the tank, q, as manipulated by the proportional/integral (PI) controller can be described by

$$q = q_s + K_c (T_r - T_m) + \frac{K_c}{\tau_i} \int_0^t (T_r - T_m) \, dt$$ \hspace{1cm} (44)

where K_c is the proportional gain of the controller, τ_i is the integral time constant or reset time. The q_s in the above equation is the energy input required at steady state for the design conditions as calculated by

$$q_s = WC_p (T_r - T_{is})$$ \hspace{1cm} (45)

The integral in Equation (44) can be conveniently be calculated by defining a new variable as

$$\frac{d}{dt}(\text{errsum}) = T_r - T_m \quad \text{I. C. } \text{errsum} = 0 \text{ at } t = 0 \text{ (steady state)}$$ \hspace{1cm} (46)

Thus Equation (44) becomes

$$q = q_s + K_c (T_r - T_m) + \frac{K_c}{\tau_i} (\text{errsum})$$ \hspace{1cm} (47)

Let us consider some of the interesting aspects of this system as it responds to a variety of parameter...
and operational changes. The numerical values of the system and control parameters in Table (4) will be considered as leading to baseline steady state operation.

Table 4 Baseline System and Control Parameters for Problem 10

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p V C_p)</td>
<td>4000 kJ/°C</td>
</tr>
<tr>
<td>(W C_p)</td>
<td>500 kJ/min °C</td>
</tr>
<tr>
<td>(T_i)</td>
<td>60 °C</td>
</tr>
<tr>
<td>(T_r)</td>
<td>80 °C</td>
</tr>
<tr>
<td>(\tau_d)</td>
<td>1 min</td>
</tr>
<tr>
<td>(\tau_m)</td>
<td>5 min</td>
</tr>
<tr>
<td>(K_c)</td>
<td>50 kJ/min °C</td>
</tr>
<tr>
<td>(\tau_l)</td>
<td>2 min</td>
</tr>
</tbody>
</table>

(a) Demonstrate the open loop performance (set \(K_c = 0\)) of this system when the system is initially operating at design steady state at a temperature of 80°C, and inlet temperature \(T_i\) is suddenly changed to 40°C at time \(t = 10\) min. Plot the temperatures \(T, T_0,\) and \(T_m\) to steady state, and verify that Padé approximation for 1 min of dead time given in Equation (42) is working properly.

(b) Demonstrate the closed loop performance of the system for the conditions of part (a) and the baseline parameters from Table (4). Plot temperatures \(T, T_0,\) and \(T_m\) to steady state.

(c) Repeat part (b) with \(K_c = 500\) kJ/min °C.

(d) Repeat part (c) for proportional only control action by setting the term \(K_c/\tau_l = 0\).

(e) Implement limits on \(q\) (as per Equation (47)) so that the maximum is 2.6 times the baseline steady state value and the minimum is zero. Demonstrate the system response from baseline steady state for a proportional only controller when the set point is changed from 80°C to 90°C at \(t = 10\) min. \(K_c = 5000\) kJ/min °C. Plot \(q\) and \(q_{lim}\) versus time to steady state to demonstrate the limits. Also plot the temperatures \(T, T_0,\) and \(T_m\) to steady state to indicate controller performance.
REFERENCES
